📄 particle.m
字号:
function particle
x = 0.1; % 初始状态
Q = 1; % 过程噪声协方差
R = 1; % 测量噪声协方差
tf = 50; % 仿真长度
N = 100; % 粒子滤波器粒子数
xhat = x;
P = 2;
xhatPart = x;
% 初始化粒子过滤器
for i = 1 : N
xpart(i) = x + sqrt(P) * randn;
end
xArr = [x];
yArr = [x^2 + sqrt(R) * randn];
xhatArr = [x];
PArr = [P];
xhatPartArr = [xhatPart];
close all;
for k = 1 : tf
% 系统仿真
x = sqrt(40^2-(x-40)^2) + 8 * cos(1.2*(k-1)) + sqrt(Q) * randn;%状态方程
y = x^2 + sqrt(R) * randn;%观测方程
% 卡尔曼滤波
F = (40-xhat)/sqrt(40^2-(xhat-40)^2);
P = F * P * F' + Q;
H = xhat / 10;
K = P * H' * inv(H * P * H' + R);
xhat = sqrt(40^2-(xhat-40)^2)+ 8 * cos(1.2*(k-1)) ;%预测
xhat = xhat + K * (y - xhat^2 );%更新
P = (1 - K * H) * P;
for i = 1 : N
xpartminus(i) = sqrt(40^2-(xpart(i)-40)^2) + 8 * cos(1.2*(k-1)) + sqrt(Q) * randn;
ypart = xpartminus(i)^2 ;
vhat = y - ypart;%观测和预测的差
q(i) = (1 / sqrt(R) / sqrt(2*pi)) * exp(-vhat^2 / 2 / R);
end
%正常化的可能性,每个先验估计
qsum = sum(q);
for i = 1 : N
q(i) = q(i) / qsum;%归一化权重
end
% 重采样
for i = 1 : N
u = rand; % 均匀随机数介于0和1
qtempsum = 0;
for j = 1 : N
qtempsum = qtempsum + q(j);
if qtempsum >= u
xpart(i) = xpartminus(j);
break;
end
end
end
xhatPart = mean(xpart);
xArr = [xArr x];
yArr = [yArr y];
xhatArr = [xhatArr xhat];
PArr = [PArr P];
xhatPartArr = [xhatPartArr xhatPart];
t = 0 : tf;
if k == 20
end
end
figure;
plot(t, xArr, 'b.', t,xhatArr,'r',t, xhatPartArr, 'k-');
xlabel('time step'); ylabel('state');
legend('True state','KF', 'Particle filter estimate');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -