📄 untitled.asv
字号:
x1=0:10:900;
y1=sqrt(-(x1-450).^2+450^2);
x2=900:10:1800;
y2=-sqrt(-(x2-1350).^2+450^2);
x3=1800:3000;
y3=0;
figure;
plot(x1,y1,'k',x2,y2,'k',x3,y3,'k');
x = 0; % 初始状态
Q = 1; % 过程噪声协方差
R = 1; % 测量噪声协方差
tf = 3000; % 仿真长度
N = 500; % 粒子滤波器粒子数
xhat = x;
P = 2;
xhatPart = x;
% 初始化粒子过滤器
for i = 1 : N
xpart(i) = x + sqrt(P) * randn;
end
xArr = [x];
yArr = [x + sqrt(R) * randn];
xhatArr = [x];
PArr = [P];
xhatPartArr = [xhatPart];
close all;
for k = 1 : tf
% 系统仿真
t1=0:900;
x1=sqrt(-(x1-450).^2+450^2);
y = x + sqrt(R) * randn;%观测方程
% 卡尔曼滤波
F = (450-x1)/sqrt(-(x1-450).^2+450^2);
P = F * P * F' + Q;
H = xhat / 10;
K = P * H' * inv(H * P * H' + R);
xhat = sqrt(-(x1-450).^2+450^2);%预测
xhat = xhat + K * (y - xhat);%更新
P = (1 - K * H) * P;
for i = 1 : N
xpartminus(i) =sqrt(-(xpart(i)-450).^2+450^2) + sqrt(Q) * randn;
ypart = xpartminus(i);
vhat = y - ypart;%观测和预测的差
q(i) = (1 / sqrt(R) / sqrt(2*pi)) * exp(-vhat^2 / 2 / R);
end
%正常化的可能性,每个先验估计
qsum = sum(q);
for i = 1 : N
q(i) = q(i) / qsum;%归一化权重
end
% 重采样
for i = 1 : N
u = rand; % 均匀随机数介于0和1
qtempsum = 0;
for j = 1 : N
qtempsum = qtempsum + q(j);
if qtempsum >= u
xpart(i) = xpartminus(j);
break;
end
end
end
xhatPart1 = mean(xpart);
xArr1 = [xArr x];
yArr1 = [yArr y];
xhatArr1 = [xhatArr xhat];
PArr1 = [PArr P];
xhatPartArr1 = [xhatPartArr xhatPart];
t2=900:1800;
x2=-sqrt(-(x2-1350).^2+450^2);
y = x + sqrt(R) * randn;%观测方程
% 卡尔曼滤波
F = (x2-1350)/sqrt(-(x2-1350).^2+450^2);
P = F * P * F' + Q;
H = xhat / 10;
K = P * H' * inv(H * P * H' + R);
xhat = sqrt(-(x2-450).^2+450^2);%预测
xhat = xhat + K * (y - xhat);%更新
P = (1 - K * H) * P;
for i = 1 : N
xpartminus(i) =-sqrt(-(xpart(i)-1350).^2+450^2) + sqrt(Q) * randn;
ypart = xpartminus(i);
vhat = y - ypart;%观测和预测的差
q(i) = (1 / sqrt(R) / sqrt(2*pi)) * exp(-vhat^2 / 2 / R);
end
%正常化的可能性,每个先验估计
qsum = sum(q);
for i = 1 : N
q(i) = q(i) / qsum;%归一化权重
end
% 重采样
for i = 1 : N
u = rand; % 均匀随机数介于0和1
qtempsum = 0;
for j = 1 : N
qtempsum = qtempsum + q(j);
if qtempsum >= u
xpart(i) = xpartminus(j);
break;
end
end
end
xhatPart2 = mean(xpart);
xArr2 = [xArr x];
yArr2 = [yArr y];
xhatArr2 = [xhatArr xhat];
PArr2 = [PArr P];
xhatPartArr2 = [xhatPartArr xhatPart];
t3=1800:3000;
x3=0;
y = x + sqrt(R) * randn;%观测方程
% 卡尔曼滤波
F = 1;
P = F * P * F' + Q;
H = xhat / 10;
K = P * H' * inv(H * P * H' + R);
xhat = x3;%预测
xhat = xhat + K * (y - xhat);%更新
P = (1 - K * H) * P;
for i = 1 : N
xpartminus(i) =xpart(i) + sqrt(Q) * randn;
ypart = xpartminus(i);
vhat = y - ypart;%观测和预测的差
q(i) = (1 / sqrt(R) / sqrt(2*pi)) * exp(-vhat^2 / 2 / R);
end
%正常化的可能性,每个先验估计
qsum = sum(q);
for i = 1 : N
q(i) = q(i) / qsum;%归一化权重
end
% 重采样
for i = 1 : N
u = rand; % 均匀随机数介于0和1
qtempsum = 0;
for j = 1 : N
qtempsum = qtempsum + q(j);
if qtempsum >= u
xpart(i) = xpartminus(j);
break;
end
end
end
xhatPart3 = mean(xpart);
xArr3 = [xArr x];
yArr3 = [yArr y];
xhatArr3 = [xhatArr xhat];
PArr3 = [PArr P];
xhatPartArr3 = [xhatPartArr xhatPart];
t1 = 0 : 900;t2=900:1800;t3=1800:3000
if k == 20
end
end
figure;
plot(t1, xArr, 'b.',t2, xArr, 'b.',t3, xArr, 'b.');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -