📄 readable.html
字号:
Uses of <A HREF="../../../../com/rapidminer/report/Readable.html" title="interface in com.rapidminer.report">Readable</A> in <A HREF="../../../../com/rapidminer/operator/learner/lazy/package-summary.html">com.rapidminer.operator.learner.lazy</A></FONT></TH></TR></TABLE> <P><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TH ALIGN="left" COLSPAN="2">Classes in <A HREF="../../../../com/rapidminer/operator/learner/lazy/package-summary.html">com.rapidminer.operator.learner.lazy</A> that implement <A HREF="../../../../com/rapidminer/report/Readable.html" title="interface in com.rapidminer.report">Readable</A></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/lazy/AttributeBasedVotingModel.html" title="class in com.rapidminer.operator.learner.lazy">AttributeBasedVotingModel</A></B></CODE><BR> Average model simply calculates the average of the attributes as prediction.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/lazy/DefaultModel.html" title="class in com.rapidminer.operator.learner.lazy">DefaultModel</A></B></CODE><BR> The default model sets the prediction of all examples to the mode value in case of nominal labels and to the average value in case of numerical labels.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/lazy/KNNClassificationModel.html" title="class in com.rapidminer.operator.learner.lazy">KNNClassificationModel</A></B></CODE><BR> An implementation of a knn model.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/lazy/KNNRegressionModel.html" title="class in com.rapidminer.operator.learner.lazy">KNNRegressionModel</A></B></CODE><BR> An implementation of a knn model used for regression</TD></TR></TABLE> <P><A NAME="com.rapidminer.operator.learner.meta"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2">Uses of <A HREF="../../../../com/rapidminer/report/Readable.html" title="interface in com.rapidminer.report">Readable</A> in <A HREF="../../../../com/rapidminer/operator/learner/meta/package-summary.html">com.rapidminer.operator.learner.meta</A></FONT></TH></TR></TABLE> <P><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TH ALIGN="left" COLSPAN="2">Classes in <A HREF="../../../../com/rapidminer/operator/learner/meta/package-summary.html">com.rapidminer.operator.learner.meta</A> that implement <A HREF="../../../../com/rapidminer/report/Readable.html" title="interface in com.rapidminer.report">Readable</A></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/AdaBoostModel.html" title="class in com.rapidminer.operator.learner.meta">AdaBoostModel</A></B></CODE><BR> A model for the RapidMiner AdaBoost implementation.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/AdditiveRegressionModel.html" title="class in com.rapidminer.operator.learner.meta">AdditiveRegressionModel</A></B></CODE><BR> The model created by an AdditiveRegression meta learner.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/BaggingModel.html" title="class in com.rapidminer.operator.learner.meta">BaggingModel</A></B></CODE><BR> The model for the internal Bagging implementation.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/BayBoostModel.html" title="class in com.rapidminer.operator.learner.meta">BayBoostModel</A></B></CODE><BR> A model for the Bayesian Boosting algorithm by Martin Scholz.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/Binary2MultiClassModel.html" title="class in com.rapidminer.operator.learner.meta">Binary2MultiClassModel</A></B></CODE><BR> This operator uses an inner learning scheme which is able to perform predictions for binary or binominal classification problems and learns a set of these binary models in order to use this set for a given data set with more than two classes.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/MetaCostModel.html" title="class in com.rapidminer.operator.learner.meta">MetaCostModel</A></B></CODE><BR> This class is associated to the MetaCost operator and supports the evaluation procedures of the MetaCost method.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/MultiModel.html" title="class in com.rapidminer.operator.learner.meta">MultiModel</A></B></CODE><BR> MultiModels are used for multi class learning tasks.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/MultiModelByRegression.html" title="class in com.rapidminer.operator.learner.meta">MultiModelByRegression</A></B></CODE><BR> MultiModels are used for multi class learning tasks.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/RelativeRegressionModel.html" title="class in com.rapidminer.operator.learner.meta">RelativeRegressionModel</A></B></CODE><BR> The model for the relative regression meta learner.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/SDEnsemble.html" title="class in com.rapidminer.operator.learner.meta">SDEnsemble</A></B></CODE><BR> A subgroup discovery model.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/SimpleVoteModel.html" title="class in com.rapidminer.operator.learner.meta">SimpleVoteModel</A></B></CODE><BR> A simple vote model.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/StackingModel.html" title="class in com.rapidminer.operator.learner.meta">StackingModel</A></B></CODE><BR> This class is the model build by the <A HREF="../../../../com/rapidminer/operator/learner/meta/Stacking.html" title="class in com.rapidminer.operator.learner.meta"><CODE>Stacking</CODE></A> operator.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/ThresholdModel.html" title="class in com.rapidminer.operator.learner.meta">ThresholdModel</A></B></CODE><BR> This model is created by the <A HREF="../../../../com/rapidminer/operator/learner/meta/CostBasedThresholdLearner.html" title="class in com.rapidminer.operator.learner.meta"><CODE>CostBasedThresholdLearner</CODE></A>.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/meta/TransformedRegressionModel.html" title="class in com.rapidminer.operator.learner.meta">TransformedRegressionModel</A></B></CODE><BR> Model for TransformedRegression.</TD></TR></TABLE> <P><A NAME="com.rapidminer.operator.learner.rules"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TH ALIGN="left" COLSPAN="2"><FONT SIZE="+2">Uses of <A HREF="../../../../com/rapidminer/report/Readable.html" title="interface in com.rapidminer.report">Readable</A> in <A HREF="../../../../com/rapidminer/operator/learner/rules/package-summary.html">com.rapidminer.operator.learner.rules</A></FONT></TH></TR></TABLE> <P><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TH ALIGN="left" COLSPAN="2">Classes in <A HREF="../../../../com/rapidminer/operator/learner/rules/package-summary.html">com.rapidminer.operator.learner.rules</A> that implement <A HREF="../../../../com/rapidminer/report/Readable.html" title="interface in com.rapidminer.report">Readable</A></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/rules/ConjunctiveRuleModel.html" title="class in com.rapidminer.operator.learner.rules">ConjunctiveRuleModel</A></B></CODE><BR> Each object of this class represents a conjunctive rule with boolean target and nominal attributes.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> class</CODE></FONT></TD><TD><CODE><B><A HREF="../../../../com/rapidminer/operator/learner/rules/RuleModel.html" title="class in com.rapidminer.operator.learner.rules">RuleModel</A></B></CODE><BR> The basic rule model.</TD></TR></TABLE> <P><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableSubHeadingColor"><TH ALIGN="left" COLSPAN="2">Methods in <A HREF="../../../../com/rapidminer/operator/learner/rules/package-summary.html">com.rapidminer.operator.learner.rules</A> that return <A HREF="../../../../com/rapidminer/report/Readable.html" title="interface in com.rapidminer.report">Readable</A></FONT></TH></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> <A HREF="../../../../com/rapidminer/report/Readable.html" title="interface in com.rapidminer.report">Readable</A></CODE></FONT></TD><TD><CODE><B>RuleModel.</B><B><A HREF="../../../../com/rapidminer/operator/learner/rules/RuleModel.html#getReadable(int)">getReadable</A></B>(int index)</CODE><BR> </TD></TR></TABLE> <P><A NAME="com.rapidminer.operator.learner.tree"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY="">
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -