📄 rungeinterp.m
字号:
function rungeinterp(arg)
%RUNGEINTERP Runge's polynomial interpolation example.
% F(x) = 1/(1+25*x^2)
% Polynomial interpolation at equally spaced points, -1 <= x <= 1.
% Does interpolant converge as number of points is increased?
F = inline('1./(1+25*x.^2)');
if nargin == 0
% Initialize plot and uicontrols
shg
clf reset
set(gcf,'doublebuffer','on','numbertitle','off', ...
'name','Runge''s interpolation example')
n = 1;
u = -1.1:.01:1.1;
z = F(u);
h.plot = plot(u,z,'-', 0,1,'o', u,z,'-');
set(h.plot(1),'color',[.6 .6 .6]);
set(h.plot(2),'color','blue');
set(h.plot(3),'color',[0 2/3 0]);
axis([-1.1 1.1 -0.1 1.1])
title(char(F),'interpreter','none')
h.minus = uicontrol('units','norm','pos',[.38 .01 .06 .05], ...
'fontsize',12,'string','<','callback','rungeinterp(''n--'')');
h.n = uicontrol('units','norm','pos',[.46 .01 .12 .05], ...
'fontsize',12,'userdata',n,'callback','rungeinterp(''n=1'')');
h.plus = uicontrol('units','norm','pos',[.60 .01 .06 .05], ...
'fontsize',12,'string','>','callback','rungeinterp(''n++'')');
h.close = uicontrol('units','norm','pos',[.80 .01 .10 .05], ...
'fontsize',12,'string','close','callback','close');
set(gcf,'userdata',h)
arg = 'n=1';
end
% Update plot.
h = get(gcf,'userdata');
% Number of interpolation points.
n = get(h.n,'userdata');
switch arg
case 'n--', n = n-2;
case 'n++', n = n+2;
case 'n=1', n = 1;
end
set(h.n,'string',['n = ' num2str(n)],'userdata',n);
if n==1
set(h.minus,'enable','off');
else
set(h.minus,'enable','on');
end
if n == 1;
x = 0;
else
x = -1 + 2*(0:n-1)/(n-1);
end
y = F(x);
u = get(h.plot(1),'xdata');
v = polyinterp(x,y,u);
set(h.plot(2),'xdata',x,'ydata',y);
set(h.plot(3),'xdata',u,'ydata',v);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -