📄 raster.txt
字号:
A render pool will be allocated once; the rasterizer uses this pool for all its needs by managing this memory directly in it. The algorithms that are used for profile computation make it possible to use the pool as a simple growing heap. This means that this memory management is actually quite easy and faster than any kind of malloc()/free() combination. Moreover, we'll see later that the rasterizer is able, when dealing with profiles too large and numerous to lie all at once in the render pool, to immediately decompose recursively the rendering process into independent sub-tasks, each taking less memory to be performed (see `sub-banding' below). The render pool doesn't need to be large. A 4KByte pool is enough for nearly all renditions, though nearly 100% slower than a more comfortable 16KByte or 32KByte pool (that was tested with complex glyphs at sizes over 500 pixels). d. Computing Profiles Extents Remember that a profile is an array, associating a _scanline_ to the x pixel coordinate of its intersection with a contour. Though it's not exactly how the FreeType rasterizer works, it is convenient to think that we need a profile's height before allocating it in the pool and computing its coordinates. The profile's height is the number of scanlines crossed by the y-monotonic section of a contour. We thus need to compute these sections from the vectorial description. In order to do that, we are obliged to compute all (local and global) y extrema of the glyph (minima and maxima). P2 For instance, this triangle has only two y-extrema, which are simply |\ | \ P2.y as a vertical maximum | \ P3.y as a vertical minimum | \ | \ P1.y is not a vertical extremum (though | \ it is a horizontal minimum, which we P1 ---___ \ don't need). ---_\ P3 Note that the extrema are expressed in pixel units, not in scanlines. The triangle's height is certainly (P3.y-P2.y+1) pixel units, but its profiles' heights are computed in scanlines. The exact conversion is simple: - min scanline = FLOOR ( min y ) - max scanline = CEILING( max y ) A problem arises with Bézier Arcs. While a segment is always necessarily y-monotonic (i.e., flat, ascending, or descending), which makes extrema computations easy, the ascent of an arc can vary between its control points. P2 * # on curve * off curve __-x--_ _-- -_ P1 _- - A non y-monotonic Bézier arc. # \ - The arc goes from P1 to P3. \ \ P3 # We first need to be able to easily detect non-monotonic arcs, according to their control points. I will state here, without proof, that the monotony condition can be expressed as: P1.y <= P2.y <= P3.y for an ever-ascending arc P1.y >= P2.y >= P3.y for an ever-descending arc with the special case of P1.y = P2.y = P3.y where the arc is said to be `flat'. As you can see, these conditions can be very easily tested. They are, however, extremely important, as any arc that does not satisfy them necessarily contains an extremum. Note also that a monotonic arc can contain an extremum too, which is then one of its `on' points: P1 P2 #---__ * P1P2P3 is ever-descending, but P1 -_ is an y-extremum. - ---_ \ -> \ \ P3 # Let's go back to our previous example: P2 * # on curve * off curve __-x--_ _-- -_ P1 _- - A non-y-monotonic Bézier arc. # \ - Here we have \ P2.y >= P1.y && \ P3 P2.y >= P3.y (!) # We need to compute the vertical maximum of this arc to be able to compute a profile's height (the point marked by an `x'). The arc's equation indicates that a direct computation is possible, but we rely on a different technique, which use will become apparent soon. Bézier arcs have the special property of being very easily decomposed into two sub-arcs, which are themselves Bézier arcs. Moreover, it is easy to prove that there is at most one vertical extremum on each Bézier arc (for second-degree curves; similar conditions can be found for third-order arcs). For instance, the following arc P1P2P3 can be decomposed into two sub-arcs Q1Q2Q3 and R1R2R3: P2 * # on curve * off curve original Bézier arc P1P2P3. __---__ _-- --_ _- -_ - - / \ / \ # # P1 P3 P2 * Q3 Decomposed into two subarcs Q2 R2 Q1Q2Q3 and R1R2R3 * __-#-__ * _-- --_ _- R1 -_ Q1 = P1 R3 = P3 - - Q2 = (P1+P2)/2 R2 = (P2+P3)/2 / \ / \ Q3 = R1 = (Q2+R2)/2 # # Q1 R3 Note that Q2, R2, and Q3=R1 are on a single line which is tangent to the curve. We have then decomposed a non-y-monotonic Bézier curve into two smaller sub-arcs. Note that in the above drawing, both sub-arcs are monotonic, and that the extremum is then Q3=R1. However, in a more general case, only one sub-arc is guaranteed to be monotonic. Getting back to our former example: Q2 * __-x--_ R1 _-- #_ Q1 _- Q3 - R2 # \ * - \ \ R3 # Here, we see that, though Q1Q2Q3 is still non-monotonic, R1R2R3 is ever descending: We thus know that it doesn't contain the extremum. We can then re-subdivide Q1Q2Q3 into two sub-arcs and go on recursively, stopping when we encounter two monotonic subarcs, or when the subarcs become simply too small. We will finally find the vertical extremum. Note that the iterative process of finding an extremum is called `flattening'. e. Computing Profiles Coordinates Once we have the height of each profile, we are able to allocate it in the render pool. The next task is to compute coordinates for each scanline. In the case of segments, the computation is straightforward, using the Euclidean algorithm (also known as Bresenham). However, for Bézier arcs, the job is a little more complicated. We assume that all Béziers that are part of a profile are the result of flattening the curve, which means that they are all y-monotonic (ascending or descending, and never flat). We now have to compute the intersections of arcs with the profile's scanlines. One way is to use a similar scheme to flattening called `stepping'. Consider this arc, going from P1 to --------------------- P3. Suppose that we need to compute its intersections with the drawn scanlines. As already --------------------- mentioned this can be done directly, but the involved * P2 _---# P3 algorithm is far too slow. ------------- _-- -- _- _/ Instead, it is still possible to ---------/----------- use the decomposition property in / the same recursive way, i.e., | subdivide the arc into subarcs ------|-------------- until these get too small to cross | more than one scanline! | -----|--------------- This is very easily done using a | rasterizer-managed stack of | subarcs. # P1 f. Sweeping and Sorting the Spans Once all our profiles have been computed, we begin the sweep to build (and fill) the spans. As both the TrueType and Type 1 specifications use the winding fill rule (but with opposite directions), we place, on each scanline, the present profiles in two separate lists. One list, called the `left' one, only contains ascending profiles, while the other `right' list contains the descending profiles. As each glyph is made of closed curves, a simple geometric property ensures that the two lists contain the same number of elements. Creating spans is thus straightforward: 1. We sort each list in increasing horizontal order. 2. We pair each value of the left list with its corresponding value in the right list. / / | | For example, we have here / / | | four profiles. Two of >/ / | | | them are ascending (1 & 1// / ^ | | | 2 3), while the two others // // 3| | | v are descending (2 & 4). / //4 | | | On the given scanline, a / /< | | the left list is (1,3), - - - *-----* - - - - *---* - - y - and the right one is / / b c| |d (4,2) (sorted). There are then two spans, joining 1 to 4 (i.e. a-b) and 3 to 2 (i.e. c-d)! Sorting doesn't necessarily take much time, as in 99 cases out of 100, the lists' order is kept from one scanline to the next. We can thus implement it with two simple singly-linked lists, sorted by a classic bubble-sort, which takes a minimum amount of time when the lists are already sorted. A previous version of the rasterizer used more elaborate structures, like arrays to perform `faster' sorting. It turned out that this old scheme is not faster than the one described above. Once the spans have been `created', we can simply draw them in the target bitmap.------------------------------------------------------------------------Copyright 2003, 2007 byDavid Turner, Robert Wilhelm, and Werner Lemberg.This file is part of the FreeType project, and may only be used,modified, and distributed under the terms of the FreeType projectlicense, LICENSE.TXT. By continuing to use, modify, or distribute thisfile you indicate that you have read the license and understand andaccept it fully.--- end of raster.txt ---Local Variables:coding: utf-8End:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -