📄 jfdct_bin_c_trac.c~
字号:
/* * jfdct_bin_l1.c * * Copyright (C) 1991-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a slow-but-accurate integer implementation of the * forward DCT (Discrete Cosine Transform). * * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT * on each column. Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * This implementation is based on an algorithm described in * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. *//* ************************************************ * * $Log$ * ************************************************ *//************************************************************************* Modification History:* Date Programmer Description* -------- ---------- --------------------------------------------*************************************************************************/#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "jdct.h" /* Private declarations for DCT subsystem */#ifdef DCT_BIN_L1_SUPPORTED/* * This module is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif/* * The poop on this scaling stuff is as follows: * * Each 1-D DCT step produces outputs which are a factor of sqrt(N) * larger than the true DCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D DCT, * because the y0 and y4 outputs need not be divided by sqrt(N). * In the IJG code, this factor of 8 is removed by the quantization step * (in jcdctmgr.c), NOT in this module. * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (For 12-bit sample data, the intermediate * array is INT32 anyway.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */#if BITS_IN_JSAMPLE == 8#define CONST_BITS 13#define PASS1_BITS 2#else#define CONST_BITS 13#define PASS1_BITS 1 /* lose a little precision to avoid overflow */#endif/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */#if CONST_BITS == 13#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */#else#define FIX_0_298631336 FIX(0.298631336)#define FIX_0_390180644 FIX(0.390180644)#define FIX_0_541196100 FIX(0.541196100)#define FIX_0_765366865 FIX(0.765366865)#define FIX_0_899976223 FIX(0.899976223)#define FIX_1_175875602 FIX(1.175875602)#define FIX_1_501321110 FIX(1.501321110)#define FIX_1_847759065 FIX(1.847759065)#define FIX_1_961570560 FIX(1.961570560)#define FIX_2_053119869 FIX(2.053119869)#define FIX_2_562915447 FIX(2.562915447)#define FIX_3_072711026 FIX(3.072711026)#endif/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */#if BITS_IN_JSAMPLE == 8#define MULTIPLY(var,const) MULTIPLY16C16(var,const)#else#define MULTIPLY(var,const) ((var) * (const))#endif/* * Perform the forward DCT on one block of samples. */GLOBAL(void)jpeg_fdct_bin_l1 (DCTELEM * data){ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; INT32 tmp10, tmp11, tmp12, tmp13; INT32 z1, z2, z3, z4, z5; DCTELEM *dataptr; int ctr; SHIFT_TEMPS /* Pass 1: process rows. */ /* Note results are scaled up by sqrt(8) compared to a true DCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part */ tmp10 = (tmp0 + tmp3) ; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = (tmp1 + tmp2) ; tmp12 = tmp1 - tmp2; dataptr[0] = (tmp10 + tmp11); /* phase 3 */ dataptr[4]=tmp10-tmp11; dataptr[6] = tmp12 - (((tmp13 << 1) + tmp13 + 4) >> 3); dataptr[2] = tmp13 + (((dataptr[6] << 1) + dataptr[6] + 4) >> 3); /* Odd part */ tmp10 = tmp4; /* phase 2 */ tmp13 = tmp7;/* pi/4 = -7/16u 11/16d -3/8u*/ tmp12 = tmp6 + (((tmp5<<1) + tmp5 + 4) >> 3); tmp11 = (((tmp12<<2) + tmp12 + 4) >> 3) - tmp5; tmp1 = (tmp10+tmp11) ; tmp4 = (tmp12+tmp13) ; tmp2 = tmp10-tmp11; tmp3 = -tmp12+tmp13; /* 7pi/16 = -3/16u 3/16d */ dataptr[1] = tmp4; dataptr[7] = tmp1-((tmp4+4) >> 3); /* 3pi/16 = 7/8u -1/2d */ dataptr[5] = tmp2 + (((tmp3<<2) + (tmp3<<1) + tmp3 + 4) >> 3); dataptr[3] = tmp3 - ((dataptr[5] + 1) >> 1); dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = (dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]); tmp7 = (dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]); tmp1 = (dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]); tmp6 = (dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]); tmp2 = (dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]); tmp5 = (dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]); tmp3 = (dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]); tmp4 = (dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]); /* Even part */ tmp10 = (tmp0 + tmp3); /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = (tmp1 + tmp2); tmp12 = tmp1 - tmp2; dataptr[DCTSIZE*0] = (tmp10 + tmp11); /* phase 3 */ dataptr[DCTSIZE*4]=tmp10-tmp11; dataptr[DCTSIZE*6] = tmp12 - (((tmp13 << 1) + tmp13 + 4) >> 3); dataptr[DCTSIZE*2] = tmp13 + (((dataptr[DCTSIZE*6] << 1) + dataptr[DCTSIZE*6] + 4) >> 3); /* Odd part */ tmp10 = tmp4; /* phase 2 */ tmp13 = tmp7;/* pi/4 = -7/16u 11/16d -3/8u*/ tmp12 = tmp6 + (((tmp5<<1) + tmp5 + 4) >> 3); tmp11 = (((tmp12<<2) + tmp12 + 4) >> 3) - tmp5; tmp1 = (tmp10+tmp11) ; tmp4 = (tmp12+tmp13) ; tmp2 = tmp10-tmp11; tmp3 = -tmp12+tmp13; /* 7pi/16 = -3/16u 3/16d */ dataptr[DCTSIZE*1] = tmp4; dataptr[DCTSIZE*7] = tmp1-((tmp4+4) >> 3); /* 3pi/16 = 7/8u -1/2d */ dataptr[DCTSIZE*5] = tmp2 + (((tmp3<<2) + (tmp3<<1) + tmp3 + 4) >> 3); dataptr[DCTSIZE*3] = tmp3 - ((dataptr[DCTSIZE*5] + 1) >> 1); dataptr++; /* advance pointer to next column */ }}#endif /* DCT_BIN_L1_SUPPORTED */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -