⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jfdct_bin_c_trac.c~

📁 JPEG Image compression using IJG standards followed
💻 C~
字号:
/* * jfdct_bin_l1.c * * Copyright (C) 1991-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a slow-but-accurate integer implementation of the * forward DCT (Discrete Cosine Transform). * * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT * on each column.  Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * This implementation is based on an algorithm described in *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. *//* ************************************************ * * $Log$ * ************************************************ *//************************************************************************* Modification History:* Date       Programmer   Description* --------   ----------   --------------------------------------------*************************************************************************/#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "jdct.h"		/* Private declarations for DCT subsystem */#ifdef DCT_BIN_L1_SUPPORTED/* * This module is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif/* * The poop on this scaling stuff is as follows: * * Each 1-D DCT step produces outputs which are a factor of sqrt(N) * larger than the true DCT outputs.  The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm.  The advantage of * this arrangement is that we save two multiplications per 1-D DCT, * because the y0 and y4 outputs need not be divided by sqrt(N). * In the IJG code, this factor of 8 is removed by the quantization step * (in jcdctmgr.c), NOT in this module. * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic.  We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants).  After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output.  This division can be done * cheaply as a right shift of CONST_BITS bits.  We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision.  These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling.  (For 12-bit sample data, the intermediate * array is INT32 anyway.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis * shows that the values given below are the most effective. */#if BITS_IN_JSAMPLE == 8#define CONST_BITS  13#define PASS1_BITS  2#else#define CONST_BITS  13#define PASS1_BITS  1		/* lose a little precision to avoid overflow */#endif/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */#if CONST_BITS == 13#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */#else#define FIX_0_298631336  FIX(0.298631336)#define FIX_0_390180644  FIX(0.390180644)#define FIX_0_541196100  FIX(0.541196100)#define FIX_0_765366865  FIX(0.765366865)#define FIX_0_899976223  FIX(0.899976223)#define FIX_1_175875602  FIX(1.175875602)#define FIX_1_501321110  FIX(1.501321110)#define FIX_1_847759065  FIX(1.847759065)#define FIX_1_961570560  FIX(1.961570560)#define FIX_2_053119869  FIX(2.053119869)#define FIX_2_562915447  FIX(2.562915447)#define FIX_3_072711026  FIX(3.072711026)#endif/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */#if BITS_IN_JSAMPLE == 8#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)#else#define MULTIPLY(var,const)  ((var) * (const))#endif/* * Perform the forward DCT on one block of samples. */GLOBAL(void)jpeg_fdct_bin_l1 (DCTELEM * data){  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;  INT32 tmp10, tmp11, tmp12, tmp13;  INT32 z1, z2, z3, z4, z5;  DCTELEM *dataptr;  int ctr;  SHIFT_TEMPS  /* Pass 1: process rows. */  /* Note results are scaled up by sqrt(8) compared to a true DCT; */  /* furthermore, we scale the results by 2**PASS1_BITS. */  dataptr = data;  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {    tmp0 = dataptr[0] + dataptr[7];    tmp7 = dataptr[0] - dataptr[7];    tmp1 = dataptr[1] + dataptr[6];    tmp6 = dataptr[1] - dataptr[6];    tmp2 = dataptr[2] + dataptr[5];    tmp5 = dataptr[2] - dataptr[5];    tmp3 = dataptr[3] + dataptr[4];    tmp4 = dataptr[3] - dataptr[4];        /* Even part */        tmp10 = (tmp0 + tmp3) ;	/* phase 2 */    tmp13 = tmp0 - tmp3;    tmp11 = (tmp1 + tmp2) ;    tmp12 = tmp1 - tmp2;        dataptr[0] = (tmp10 + tmp11); /* phase 3 */    dataptr[4]=tmp10-tmp11;    dataptr[6] = tmp12 - (((tmp13 << 1) + tmp13 + 4) >> 3);    dataptr[2] = tmp13 + (((dataptr[6] << 1) + dataptr[6] + 4) >> 3);        /* Odd part */    tmp10 = tmp4;	/* phase 2 */    tmp13 = tmp7;/* pi/4 = -7/16u 11/16d -3/8u*/    tmp12 = tmp6 + (((tmp5<<1) + tmp5 + 4) >> 3);    tmp11 = (((tmp12<<2) + tmp12 + 4) >> 3) -  tmp5;    tmp1 = (tmp10+tmp11) ;    tmp4 = (tmp12+tmp13) ;    tmp2 = tmp10-tmp11;    tmp3 = -tmp12+tmp13;    /* 7pi/16 = -3/16u 3/16d */    dataptr[1] = tmp4;    dataptr[7] = tmp1-((tmp4+4) >> 3);    /* 3pi/16 = 7/8u -1/2d */    dataptr[5] = tmp2 + (((tmp3<<2) + (tmp3<<1) + tmp3 + 4) >> 3);    dataptr[3] = tmp3 - ((dataptr[5] + 1) >> 1);        dataptr += DCTSIZE;		/* advance pointer to next row */  }  /* Pass 2: process columns.   * We remove the PASS1_BITS scaling, but leave the results scaled up   * by an overall factor of 8.   */  dataptr = data;  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {    tmp0 = (dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]);    tmp7 = (dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]);    tmp1 = (dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]);    tmp6 = (dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]);    tmp2 = (dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]);    tmp5 = (dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]);    tmp3 = (dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]);    tmp4 = (dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]);        /* Even part */        tmp10 = (tmp0 + tmp3);	/* phase 2 */    tmp13 = tmp0 - tmp3;    tmp11 = (tmp1 + tmp2);    tmp12 = tmp1 - tmp2;        dataptr[DCTSIZE*0] = (tmp10 + tmp11); /* phase 3 */    dataptr[DCTSIZE*4]=tmp10-tmp11;    dataptr[DCTSIZE*6] = tmp12 - (((tmp13 << 1) + tmp13 + 4) >> 3);    dataptr[DCTSIZE*2] = tmp13 + (((dataptr[DCTSIZE*6] << 1) + dataptr[DCTSIZE*6] + 4) >> 3);    /* Odd part */    tmp10 = tmp4;	/* phase 2 */    tmp13 = tmp7;/* pi/4 = -7/16u 11/16d -3/8u*/    tmp12 = tmp6 + (((tmp5<<1) + tmp5 + 4) >> 3);    tmp11 = (((tmp12<<2) + tmp12 + 4) >> 3) -  tmp5;    tmp1 = (tmp10+tmp11) ;    tmp4 = (tmp12+tmp13) ;    tmp2 = tmp10-tmp11;    tmp3 = -tmp12+tmp13;    /* 7pi/16 = -3/16u 3/16d */    dataptr[DCTSIZE*1] = tmp4;    dataptr[DCTSIZE*7] = tmp1-((tmp4+4) >> 3);        /* 3pi/16 = 7/8u -1/2d */    dataptr[DCTSIZE*5] = tmp2 + (((tmp3<<2) + (tmp3<<1) + tmp3 + 4) >> 3);    dataptr[DCTSIZE*3] = tmp3 - ((dataptr[DCTSIZE*5] + 1) >> 1);    dataptr++;			/* advance pointer to next column */  }}#endif /* DCT_BIN_L1_SUPPORTED */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -