📄 jfdct_bin_a1.c,v
字号:
head 1.1;access;symbols;locks jliang:1.1; strict;comment @ * @;1.1date 2000.07.23.15.37.05; author jliang; state Exp;branches;next ;desc@@1.1log@Initial revision@text@/* * jfdct_bin_a1.c * * Var. 1 of binDCT from Chen's factorization. * *//* ************************************************ * * $Log$ * ************************************************ *//************************************************************************* Modification History:* Date Programmer Description* -------- ---------- --------------------------------------------*************************************************************************/#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "jdct.h" /* Private declarations for DCT subsystem */#ifdef DCT_BIN_A1_SUPPORTED/* * This module is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif/* * The poop on this scaling stuff is as follows: * * Each 1-D DCT step produces outputs which are a factor of sqrt(N) * larger than the true DCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D DCT, * because the y0 and y4 outputs need not be divided by sqrt(N). * In the IJG code, this factor of 8 is removed by the quantization step * (in jcdctmgr.c), NOT in this module. * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (For 12-bit sample data, the intermediate * array is INT32 anyway.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */#if BITS_IN_JSAMPLE == 8#define CONST_BITS 13#define PASS1_BITS 2#else#define CONST_BITS 13#define PASS1_BITS 1 /* lose a little precision to avoid overflow */#endif/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */#if CONST_BITS == 13#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */#else#define FIX_0_298631336 FIX(0.298631336)#define FIX_0_390180644 FIX(0.390180644)#define FIX_0_541196100 FIX(0.541196100)#define FIX_0_765366865 FIX(0.765366865)#define FIX_0_899976223 FIX(0.899976223)#define FIX_1_175875602 FIX(1.175875602)#define FIX_1_501321110 FIX(1.501321110)#define FIX_1_847759065 FIX(1.847759065)#define FIX_1_961570560 FIX(1.961570560)#define FIX_2_053119869 FIX(2.053119869)#define FIX_2_562915447 FIX(2.562915447)#define FIX_3_072711026 FIX(3.072711026)#endif/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */#if BITS_IN_JSAMPLE == 8#define MULTIPLY(var,const) MULTIPLY16C16(var,const)#else#define MULTIPLY(var,const) ((var) * (const))#endif//Jie 07/09/00: lossless binDCT flag, defined in cjpeg.extern boolean lossless_codec;/* * Perform the forward binDCT-A on one block of samples. * Cost: 17 shifts. */GLOBAL(void)jpeg_fdct_bin_a1 (DCTELEM * data){ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; INT32 tmp10, tmp11, tmp12, tmp13; INT32 z1, z2, z3, z4, z5; DCTELEM *dataptr; int ctr; SHIFT_TEMPS /* fprintf(stderr, "jpeg_fdct_bin_a1 ...\n"); */ /* Pass 1: process rows. */ /* Note results are scaled up by sqrt(8) compared to a true DCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ //fprintf(stderr, "\nOriginal image:\n");//Case 1: lossless binDCT not required. Use original butterflies.if (!lossless_codec){ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {/*******************//* Jie: test code */ // for (tmp0 = 0; tmp0 < 8; tmp0 ++) { // fprintf(stderr, "%10d", dataptr[tmp0]+128); // } // fprintf(stderr, "\n"); tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part */ tmp10 = (tmp0 + tmp3) ; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = (tmp1 + tmp2) ; tmp12 = tmp1 - tmp2; dataptr[0] = (tmp10 + tmp11); /* phase 3 */ dataptr[4] = ((dataptr[0] + 1) >> 1) - tmp11; /* Jie 05/18/00 */ //dataptr[4] = tmp10 - tmp11; /*1/2, -1/2: alter the sign to get positive scaling factor */ dataptr[6] = (( tmp13 + 1) >> 1) - tmp12; dataptr[2] = tmp13 - ((dataptr[6] + 1) >> 1); /* Odd part *//* pi/4 = -1/2u 3/4d -1/2u*/ tmp10 = tmp5 - (( tmp6 + 1) >> 1); tmp6 = tmp6 + tmp10 - ((tmp10 + 2) >> 2); tmp5 = ((tmp6 + 1) >> 1) - tmp10; tmp10 = tmp4 + tmp5; tmp11 = tmp4 - tmp5; tmp12 = tmp7 - tmp6; tmp13 = tmp7 + tmp6; /* 7pi/16 = 1/4u -1/4d: alter the sign to get positive scaling factor */ dataptr[7] = ((tmp13 + 2) >> 2) - tmp10; dataptr[1] = tmp13 - ((dataptr[7] + 2) >> 2); /* 3pi/16 = */ /* new version: 1, -1/2 */ dataptr[5] = tmp11 + tmp12; dataptr[3] = tmp12 - ((dataptr[5] + 1) >> 1); dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = (dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]); tmp7 = (dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]); tmp1 = (dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]); tmp6 = (dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]); tmp2 = (dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]); tmp5 = (dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]); tmp3 = (dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]); tmp4 = (dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]); /* Even part */ tmp10 = (tmp0 + tmp3); /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = (tmp1 + tmp2); tmp12 = tmp1 - tmp2; dataptr[DCTSIZE*0] = (tmp10 + tmp11); /* phase 3 */ dataptr[DCTSIZE*4] = ((dataptr[DCTSIZE*0] + 1) >> 1) - tmp11; /* Jie 05/18/00 */ //dataptr[DCTSIZE*4] = (tmp10 - tmp11); /* phase 3 */ // 1/2, 1/2 dataptr[DCTSIZE*6] = ((tmp13 + 1) >> 1) - tmp12; dataptr[DCTSIZE*2] = tmp13 - ((dataptr[DCTSIZE*6] + 1) >> 1); /* Odd part *//* pi/4 = -1/2u 3/4d -1/2u*/ tmp10 = tmp5 - ((tmp6 + 1) >> 1); tmp6 = tmp6 + tmp10 - ((tmp10 + 2) >> 2); tmp5 = ((tmp6 + 1) >> 1) - tmp10; tmp10 = tmp4 + tmp5; tmp11 = tmp4 - tmp5; tmp12 = tmp7 - tmp6; tmp13 = tmp7 + tmp6; /* 7pi/16 = 1/4u -1/4d: alter sign to get positive scaling factor */ dataptr[DCTSIZE*7] = ((tmp13 + 2) >> 2) - tmp10; dataptr[DCTSIZE*1] = tmp13 - ((dataptr[DCTSIZE*7] + 2) >> 2); /* 3pi/16 = */ /* new : 1 and -1/2 */ dataptr[DCTSIZE*5] = tmp11 + tmp12 ; dataptr[DCTSIZE*3] = tmp12 - ((dataptr[DCTSIZE*5] + 1) >> 1); dataptr++; /* advance pointer to next column */ }/****************************************************************************/ } else {/****************************************************************************/ //Case 2: lossless binDCT: Use new butterflies. dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {/*******************//* Jie: test code */ // for (tmp0 = 0; tmp0 < 8; tmp0 ++) { // fprintf(stderr, "%10d", dataptr[tmp0]+128); // } // fprintf(stderr, "\n"); tmp7 = dataptr[0] - dataptr[7]; tmp0 = dataptr[0] - ((tmp7 + 1) >> 1); tmp6 = dataptr[1] - dataptr[6]; tmp1 = dataptr[1] - ((tmp6 + 1) >> 1); tmp5 = dataptr[2] - dataptr[5]; tmp2 = dataptr[2] - ((tmp5 + 1) >> 1); tmp4 = dataptr[3] - dataptr[4]; tmp3 = dataptr[3] - ((tmp4 + 1) >> 1); /* Even part */ //old method: larger dynamic range. // tmp10 = (tmp0 + tmp3) ; /* phase 2 */ // tmp13 = ((tmp10 + 1) >> 1) - tmp3; tmp13 = tmp0 - tmp3; tmp10 = tmp0 - ((tmp13 + 1) >> 1); // tmp11 = (tmp1 + tmp2) ; // tmp12 = ((tmp11 + 1) >> 1) - tmp2; tmp12 = tmp1 - tmp2; tmp11 = tmp1 - ((tmp12 + 1) >> 1); // dataptr[0] = (tmp10 + tmp11); /* phase 3 */ // dataptr[4] = ((dataptr[0] + 1) >> 1) - tmp11; /* Jie 05/18/00 */ dataptr[4] = tmp10 - tmp11; dataptr[0] = tmp10 - ((dataptr[4] + 1) >> 1); /*1/2, -1/2: alter the sign to get positive scaling factor */ /* new version: 7/16 and -3/8 */ dataptr[6] = ( (tmp13 + 1) >> 1) - tmp12; dataptr[2] = tmp13 - ((dataptr[6] + 1) >> 1); /* Odd part *//* pi/4 = -1/2u 3/4d -1/2u*/ tmp10 = tmp5 - (( tmp6 + 1) >> 1); tmp6 = tmp6 + tmp10 - (( tmp10 + 2) >> 2); tmp5 = ((tmp6 + 1) >> 1) - tmp10; //butterflies: tmp10 = tmp4 + tmp5; tmp11 = ((tmp10 + 1) >> 1) - tmp5; tmp13 = tmp6 + tmp7; tmp12 = ((tmp13 + 1) >> 1) - tmp6; /* 7pi/16 = 1/4u -1/4d: alter the sign to get positive scaling factor */ dataptr[7] = (( tmp13 + 2) >> 2) - tmp10; dataptr[1] = tmp13 - (( dataptr[7] + 2) >> 2); /* 3pi/16 = */ /* new version: 1, -1/2 */ dataptr[5] = tmp11 + tmp12 ; dataptr[3] = tmp12 - ((dataptr[5] + 1) >> 1); dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; tmp0 = dataptr[DCTSIZE*0] - ((tmp7 + 1) >> 1); tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; tmp1 = dataptr[DCTSIZE*1] - ((tmp6 + 1) >> 1); tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; tmp2 = dataptr[DCTSIZE*2] - ((tmp5 + 1) >> 1); tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; tmp3 = dataptr[DCTSIZE*3] - ((tmp4 + 1) >> 1); /* Even part */ //tmp10 = (tmp0 + tmp3); //tmp13 = ((tmp10 + 1) >> 1) - tmp3; tmp13 = tmp0 - tmp3; tmp10 = tmp0 - ((tmp13 + 1) >> 1); //tmp11 = (tmp1 + tmp2); //tmp12 = ((tmp11 + 1) >> 1) - tmp2; tmp12 = tmp1 - tmp2; tmp11 = tmp1 - ((tmp12 + 1) >> 1); //old method: larger dynamic range //dataptr[DCTSIZE*0] = (tmp10 + tmp11); /* phase 3 */ //dataptr[DCTSIZE*4] = ((dataptr[DCTSIZE*0] + 1) >> 1) - tmp11; /* Jie 05/18/00 */ dataptr[DCTSIZE*4] = tmp10 - tmp11; dataptr[DCTSIZE*0] = tmp10 - ((dataptr[DCTSIZE*4] + 1) >> 1); // 1/2, 1/2 dataptr[DCTSIZE*6] = (( tmp13 + 1) >> 1) - tmp12; dataptr[DCTSIZE*2] = tmp13 - (( dataptr[DCTSIZE*6] + 1) >> 1); /* Odd part *//* pi/4 = -1/2u 3/4d -1/2u*/ tmp10 = tmp5 - (( tmp6 + 1) >> 1); tmp6 = tmp6 + tmp10 - (( tmp10 + 2) >> 2); tmp5 = ((tmp6 + 1) >> 1) - tmp10; //butterflies tmp10 = tmp4 + tmp5; tmp11 = ((tmp10 + 1) >> 1) - tmp5; tmp13 = tmp7 + tmp6; tmp12 = ((tmp13 + 1) >> 1) - tmp6; /* 7pi/16 = 1/4u -1/4d: alter sign to get positive scaling factor */ dataptr[DCTSIZE*7] = (( tmp13 + 2) >> 2) - tmp10; dataptr[DCTSIZE*1] = tmp13 - (( dataptr[DCTSIZE*7] + 2) >> 2); /* 3pi/16 = */ /* new : 1 and -1/2 */ dataptr[DCTSIZE*5] = tmp11 + tmp12; dataptr[DCTSIZE*3] = tmp12 - (( dataptr[DCTSIZE*5] + 1) >> 1); dataptr++; /* advance pointer to next column */ }} // lossless ot not. }/************************************** * problem with Sachin's code: * 1: it's verison binDCT-C. * 2: X[0] and X[4]: butterfly, not lifting. * 3: Neg scaling required. ************************************** */#endif /* DCT_BIN_A1_SUPPORTED */@
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -