⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jfdct_bin_c1.c

📁 JPEG Image compression using IJG standards followed
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * jfdct_bin_c1.c * * binDCT from Chen-Wang's algorithm: * Version C1 in the paper: 23 Shifts, 42 Adds. Coding gain: 8.8251dB. * Use floor operation for all right-shifting. * * * Reference: * J. Liang, T. D. Tran, Fast Multiplierless Approximations of the DCT with the Lifting * Scheme, IEEE Trans. Signal Processing, Vol. 49, No. 12, pp. 3032-3044, Dec. 2001.  * * Trac D. Tran and Jie Liang * ECE Department, The Johns Hopkins University * 3400 North Charles Street, 105 Barton Hall, * Baltimore, MD 21218 * E-mail: trac@jhu.edu, jieliang@jhu.edu * Dec. 2000 * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * Copyright (c) 2000 Trac D Tran and Jie Liang * This program is Copyright (c) by Trac D Tran and Jie Liang. * It may not be redistributed without the consent of the copyright * holders. In no circumstances may the copyright notice be removed. * The program may not be sold for profit nor may they be incorporated * in commercial programs without the written permission of the copyright * holders. This program is provided as is, without any express or * implied warranty, without even the warranty of fitness for a * particular purpose. *----------------------------------------------------------------------- * * Copyright (C) 1994-1996, Thomas G. Lane. * This file is modified from the DCT routine in the Independent JPEG Group (IJG)'s software. * For conditions of distribution and use, see the README file in IJG's package. * *//* * jfdct_bin_c1.c * * Variation 6 of the binDCt from Chen's factorization: * Complexity: 23 shifts, 42 Adds. *  * Use floor operation. * *//* ************************************************ * * $Log: jfdct_bin_c1.c,v $ * Revision 1.1  2000/07/23 15:37:16  jliang * Initial revision * * ************************************************ *//************************************************************************* Modification History:* Date       Programmer   Description* --------   ----------   --------------------------------------------*************************************************************************/#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "jdct.h"		/* Private declarations for DCT subsystem */#ifdef DCT_BIN_C1_SUPPORTED/* * This module is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif/* * The poop on this scaling stuff is as follows: * * Each 1-D DCT step produces outputs which are a factor of sqrt(N) * larger than the true DCT outputs.  The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm.  The advantage of * this arrangement is that we save two multiplications per 1-D DCT, * because the y0 and y4 outputs need not be divided by sqrt(N). * In the IJG code, this factor of 8 is removed by the quantization step * (in jcdctmgr.c), NOT in this module. * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic.  We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants).  After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output.  This division can be done * cheaply as a right shift of CONST_BITS bits.  We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision.  These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling.  (For 12-bit sample data, the intermediate * array is INT32 anyway.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis * shows that the values given below are the most effective. */#if BITS_IN_JSAMPLE == 8#define CONST_BITS  13#define PASS1_BITS  2#else#define CONST_BITS  13#define PASS1_BITS  1		/* lose a little precision to avoid overflow */#endif/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */#if CONST_BITS == 13#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */#else#define FIX_0_298631336  FIX(0.298631336)#define FIX_0_390180644  FIX(0.390180644)#define FIX_0_541196100  FIX(0.541196100)#define FIX_0_765366865  FIX(0.765366865)#define FIX_0_899976223  FIX(0.899976223)#define FIX_1_175875602  FIX(1.175875602)#define FIX_1_501321110  FIX(1.501321110)#define FIX_1_847759065  FIX(1.847759065)#define FIX_1_961570560  FIX(1.961570560)#define FIX_2_053119869  FIX(2.053119869)#define FIX_2_562915447  FIX(2.562915447)#define FIX_3_072711026  FIX(3.072711026)#endif/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */#if BITS_IN_JSAMPLE == 8#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)#else#define MULTIPLY(var,const)  ((var) * (const))#endif//Jie 07/09/00: lossless binDCT flag, defined in cjpeg.extern boolean lossless_codec;/* * Perform the forward binDCT-A on one block of samples. * Cost: 17 shifts. */GLOBAL(void)jpeg_fdct_bin_c1 (DCTELEM * data){  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;  INT32 tmp10, tmp11, tmp12, tmp13;  INT32 z1, z2, z3, z4, z5;  DCTELEM *dataptr;  int ctr;  SHIFT_TEMPS	/*	fprintf(stderr, "jpeg_fdct_bin_a1 ...\n"); */  /* Pass 1: process rows. */  /* Note results are scaled up by sqrt(8) compared to a true DCT; */  /* furthermore, we scale the results by 2**PASS1_BITS. */	//fprintf(stderr, "\nOriginal image:\n");//Case 1: lossless binDCT not required. Use original butterflies.if (!lossless_codec){  dataptr = data;  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {/*******************//* Jie: test code */	//	for (tmp0 = 0; tmp0 < 8; tmp0 ++) {	//	  fprintf(stderr, "%10d", dataptr[tmp0]+128);	//	}	//	fprintf(stderr, "\n");    tmp0 = dataptr[0] + dataptr[7];    tmp7 = dataptr[0] - dataptr[7];    tmp1 = dataptr[1] + dataptr[6];    tmp6 = dataptr[1] - dataptr[6];    tmp2 = dataptr[2] + dataptr[5];    tmp5 = dataptr[2] - dataptr[5];    tmp3 = dataptr[3] + dataptr[4];    tmp4 = dataptr[3] - dataptr[4];        /* Even part */    tmp10 = (tmp0 + tmp3) ;	/* phase 2 */    tmp13 = tmp0 - tmp3;    tmp11 = (tmp1 + tmp2) ;    tmp12 = tmp1 - tmp2;        dataptr[0] = (tmp10 + tmp11);             /* phase 3 */	dataptr[4] = ((dataptr[0] ) >> 1) - tmp11;   /* Jie 05/18/00 */	//dataptr[4] = tmp10 - tmp11;	//3pi/8: 13/32, 11/32    dataptr[6] = ( ( (tmp13 << 3) + (tmp13 << 2) + tmp13 ) >> 5) - tmp12;    dataptr[2] = tmp13 - (( (dataptr[6] << 3) + (dataptr[6] << 1) + dataptr[6] ) >> 5);        /* Odd part *//* pi/4 = 13/32, 11/16, 13/32*/	tmp10 = tmp5 - (( (tmp6 << 3) + (tmp6 << 2) + tmp6 ) >> 5);	tmp6 = tmp6 + tmp10 - (((tmp10 << 2) + tmp10) >> 4);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -