📄 jfdct_bin_b1.c
字号:
/* * jfdct_bin_b1.c * * binDCT from Chen-Wang's algorithm: * Version C4 in the paper: 19 Shifts, 37 Adds. Coding gain: 8.8220dB. * Use floor operation for all right-shifting. * * * Reference: * J. Liang, T. D. Tran, Fast Multiplierless Approximations of the DCT with the Lifting * Scheme, IEEE Trans. Signal Processing, Vol. 49, No. 12, pp. 3032-3044, Dec. 2001. * * Trac D. Tran and Jie Liang * ECE Department, The Johns Hopkins University * 3400 North Charles Street, 105 Barton Hall, * Baltimore, MD 21218 * E-mail: trac@jhu.edu, jieliang@jhu.edu * Dec. 2000 * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * Copyright (c) 2000 Trac D Tran and Jie Liang * This program is Copyright (c) by Trac D Tran and Jie Liang. * It may not be redistributed without the consent of the copyright * holders. In no circumstances may the copyright notice be removed. * The program may not be sold for profit nor may they be incorporated * in commercial programs without the written permission of the copyright * holders. This program is provided as is, without any express or * implied warranty, without even the warranty of fitness for a * particular purpose. *----------------------------------------------------------------------- * * Copyright (C) 1994-1996, Thomas G. Lane. * This file is modified from the DCT routine in the Independent JPEG Group (IJG)'s software. * For conditions of distribution and use, see the README file in IJG's package. * *//* ************************************************ * * $Log: jfdct_bin_b1.c,v $ * Revision 1.1 2000/07/23 15:37:11 jliang * Initial revision * * ************************************************ *//************************************************************************* Modification History:* Date Programmer Description* -------- ---------- --------------------------------------------*************************************************************************/#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "jdct.h" /* Private declarations for DCT subsystem */#ifdef DCT_BIN_B1_SUPPORTED/* * This module is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif#if BITS_IN_JSAMPLE == 8#define CONST_BITS 13#define PASS1_BITS 2#else#define CONST_BITS 13#define PASS1_BITS 1 /* lose a little precision to avoid overflow */#endif/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */#if BITS_IN_JSAMPLE == 8#define MULTIPLY(var,const) MULTIPLY16C16(var,const)#else#define MULTIPLY(var,const) ((var) * (const))#endif//Jie 07/09/00: lossless binDCT flag, defined in cjpeg.extern boolean lossless_codec;/* * Perform the forward binDCT-A on one block of samples. * Cost: 17 shifts. */GLOBAL(void)jpeg_fdct_bin_b1 (DCTELEM * data){ INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; INT32 tmp10, tmp11, tmp12, tmp13; INT32 z1, z2, z3, z4, z5; DCTELEM *dataptr; int ctr; SHIFT_TEMPS /* fprintf(stderr, "jpeg_fdct_bin_a1 ...\n"); */ /* Pass 1: process rows. */ /* Note results are scaled up by sqrt(8) compared to a true DCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ //fprintf(stderr, "\nOriginal image:\n");//Case 1: lossless binDCT not required. Use original butterflies.if (!lossless_codec){ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {/*******************//* Jie: test code */ // for (tmp0 = 0; tmp0 < 8; tmp0 ++) { // fprintf(stderr, "%10d", dataptr[tmp0]+128); // } // fprintf(stderr, "\n"); tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part */ tmp10 = (tmp0 + tmp3) ; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = (tmp1 + tmp2) ; tmp12 = tmp1 - tmp2; dataptr[0] = (tmp10 + tmp11); /* phase 3 */ dataptr[4] = ((dataptr[0]) >> 1) - tmp11; /* Jie 05/18/00 */ //dataptr[4] = tmp10 - tmp11; /*3/8, -3/8: alter the sign to get positive scaling factor */ /* new version: 7/16 and -3/8 */ dataptr[6] = ( ((tmp13 << 3) - tmp13) >> 4) - tmp12; /* 1/2 - 1/16 */ dataptr[2] = tmp13 - (((dataptr[6] << 1) + dataptr[6]) >> 3); /* Odd part *//* pi/4 = -7/16u 11/16d -3/8u*/ tmp10 = tmp5 - (( (tmp6 << 3) - tmp6) >> 4); tmp6 = tmp6 + tmp10 - (((tmp10 << 2) + tmp10) >> 4); tmp5 = (((tmp6 << 1) + tmp6) >> 3) - tmp10; tmp10 = tmp4 + tmp5; tmp11 = tmp4 - tmp5; tmp12 = tmp7 - tmp6; tmp13 = tmp7 + tmp6; /* 7pi/16 = 3/16u -3/16d: alter the sign to get positive scaling factor */ dataptr[7] = (((tmp13 << 1) + tmp13) >> 4) - tmp10; dataptr[1] = tmp13 - (((dataptr[7] << 1) + dataptr[7]) >> 4); /* 3pi/16 = */ /* new version: 5/8, -7/16 */ dataptr[5] = tmp11 + (((tmp12 << 2) + tmp12) >> 3); dataptr[3] = tmp12 - (((dataptr[5] << 3) - dataptr[5]) >> 4); dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = (dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]); tmp7 = (dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]); tmp1 = (dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]); tmp6 = (dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]); tmp2 = (dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]); tmp5 = (dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]); tmp3 = (dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]); tmp4 = (dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]); /* Even part */ tmp10 = (tmp0 + tmp3); /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = (tmp1 + tmp2); tmp12 = tmp1 - tmp2; dataptr[DCTSIZE*0] = (tmp10 + tmp11); /* phase 3 */ dataptr[DCTSIZE*4] = ((dataptr[DCTSIZE*0] ) >> 1) - tmp11; /* Jie 05/18/00 */ //dataptr[DCTSIZE*4] = (tmp10 - tmp11); /* phase 3 */ // 7/16, 3/8 dataptr[DCTSIZE*6] = (((tmp13 << 3) - tmp13 ) >> 4) - tmp12; dataptr[DCTSIZE*2] = tmp13 - (((dataptr[DCTSIZE*6] << 1) + dataptr[DCTSIZE*6] ) >> 3); /* Odd part *//* pi/4 = -7/16u 11/16d -3/8u*/ tmp10 = tmp5 - (((tmp6 << 3) - tmp6 ) >> 4); tmp6 = tmp6 + tmp10 - (((tmp10 << 2) + tmp10 ) >> 4); tmp5 = (((tmp6 << 1) + tmp6 ) >> 3) - tmp10; tmp10 = tmp4 + tmp5; tmp11 = tmp4 - tmp5; tmp12 = tmp7 - tmp6; tmp13 = tmp7 + tmp6; /* 7pi/16 = 3/16u -3/16d: alter sign to get positive scaling factor */ dataptr[DCTSIZE*7] = (((tmp13 << 1) + tmp13 ) >> 4) - tmp10; dataptr[DCTSIZE*1] = tmp13 - (((dataptr[DCTSIZE*7] << 1) + dataptr[DCTSIZE*7] ) >> 4); /* 3pi/16 = */ /* new : 5/8 and -7/16 */ dataptr[DCTSIZE*5] = tmp11 + (((tmp12 << 2) + tmp12 ) >> 3); dataptr[DCTSIZE*3] = tmp12 - (((dataptr[DCTSIZE*5] << 3) - dataptr[DCTSIZE*5] ) >> 4); dataptr++; /* advance pointer to next column */ }/****************************************************************************/ } else {/****************************************************************************/ //Case 2: lossless binDCT: Use new butterflies. dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {/*******************//* Jie: test code */ // for (tmp0 = 0; tmp0 < 8; tmp0 ++) { // fprintf(stderr, "%10d", dataptr[tmp0]+128); // } // fprintf(stderr, "\n"); tmp7 = dataptr[0] - dataptr[7]; tmp0 = dataptr[0] - ((tmp7 ) >> 1); tmp6 = dataptr[1] - dataptr[6]; tmp1 = dataptr[1] - ((tmp6 ) >> 1); tmp5 = dataptr[2] - dataptr[5]; tmp2 = dataptr[2] - ((tmp5 ) >> 1); tmp4 = dataptr[3] - dataptr[4]; tmp3 = dataptr[3] - ((tmp4 ) >> 1); /* Even part */ //old method: larger dynamic range. // tmp10 = (tmp0 + tmp3) ; /* phase 2 */ // tmp13 = ((tmp10 ) >> 1) - tmp3; tmp13 = tmp0 - tmp3; tmp10 = tmp0 - ((tmp13 ) >> 1); // tmp11 = (tmp1 + tmp2) ; // tmp12 = ((tmp11 ) >> 1) - tmp2; tmp12 = tmp1 - tmp2; tmp11 = tmp1 - ((tmp12 ) >> 1); // dataptr[0] = (tmp10 + tmp11); /* phase 3 */ // dataptr[4] = ((dataptr[0] ) >> 1) - tmp11; /* Jie 05/18/00 */ dataptr[4] = tmp10 - tmp11; dataptr[0] = tmp10 - ((dataptr[4] ) >> 1); /*3/8, -3/8: alter the sign to get positive scaling factor */ /* new version: 7/16 and -3/8 */ dataptr[6] = ( ((tmp13 << 3) - tmp13 ) >> 4) - tmp12; /* 1/2 - 1/16 */ dataptr[2] = tmp13 - (((dataptr[6] << 1) + dataptr[6] ) >> 3); /* Odd part *//* pi/4 = -7/16u 11/16d -3/8u*/ tmp10 = tmp5 - (( (tmp6 << 3) - tmp6 ) >> 4); tmp6 = tmp6 + tmp10 - (((tmp10 << 2) + tmp10 ) >> 4); tmp5 = (((tmp6 << 1) + tmp6 ) >> 3) - tmp10; //butterflies: //tmp10 = tmp4 + tmp5; //tmp11 = ((tmp10 ) >> 1) - tmp5; tmp11 = tmp4 - tmp5; tmp10 = tmp4 - ((tmp11 ) >> 1); //tmp13 = tmp6 + tmp7; //tmp12 = ((tmp13 ) >> 1) - tmp6; tmp12 = tmp7 - tmp6; tmp13 = tmp7 - (( tmp12 ) >> 1); /* 7pi/16 = 3/16u -3/16d: alter the sign to get positive scaling factor */ dataptr[7] = (((tmp13 << 1) + tmp13 ) >> 4) - tmp10; dataptr[1] = tmp13 - (((dataptr[7] << 1) + dataptr[7] ) >> 4); /* 3pi/16 = */ /* new version: 5/8, -7/16 */ dataptr[5] = tmp11 + (((tmp12 << 2) + tmp12 ) >> 3); dataptr[3] = tmp12 - (((dataptr[5] << 3) - dataptr[5] ) >> 4); dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; tmp0 = dataptr[DCTSIZE*0] - ((tmp7 ) >> 1); tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; tmp1 = dataptr[DCTSIZE*1] - ((tmp6 ) >> 1); tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; tmp2 = dataptr[DCTSIZE*2] - ((tmp5 ) >> 1); tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; tmp3 = dataptr[DCTSIZE*3] - ((tmp4 ) >> 1); /* Even part */ //tmp10 = (tmp0 + tmp3); //tmp13 = ((tmp10 ) >> 1) - tmp3; tmp13 = tmp0 - tmp3; tmp10 = tmp0 - ((tmp13 ) >> 1); //tmp11 = (tmp1 + tmp2); //tmp12 = ((tmp11 ) >> 1) - tmp2; tmp12 = tmp1 - tmp2; tmp11 = tmp1 - ((tmp12 ) >> 1); //old method: larger dynamic range //dataptr[DCTSIZE*0] = (tmp10 + tmp11); /* phase 3 */ //dataptr[DCTSIZE*4] = ((dataptr[DCTSIZE*0] ) >> 1) - tmp11; /* Jie 05/18/00 */ dataptr[DCTSIZE*4] = tmp10 - tmp11; dataptr[DCTSIZE*0] = tmp10 - ((dataptr[DCTSIZE*4] ) >> 1); // 7/16, 3/8 dataptr[DCTSIZE*6] = (((tmp13 << 3) - tmp13 ) >> 4) - tmp12; dataptr[DCTSIZE*2] = tmp13 - (((dataptr[DCTSIZE*6] << 1) + dataptr[DCTSIZE*6] ) >> 3); /* Odd part *//* pi/4 = -7/16u 11/16d -3/8u*/ tmp10 = tmp5 - (((tmp6 << 3) - tmp6 ) >> 4); tmp6 = tmp6 + tmp10 - (((tmp10 << 2) + tmp10 ) >> 4); tmp5 = (((tmp6 << 1) + tmp6 ) >> 3) - tmp10; //butterflies //old //tmp10 = tmp4 + tmp5; //tmp11 = ((tmp10 ) >> 1) - tmp5; tmp11 = tmp4 - tmp5; tmp10 = tmp4 - ((tmp11 ) >> 1); //old //tmp13 = tmp7 + tmp6; //tmp12 = ((tmp13 ) >> 1) - tmp6; tmp12 = tmp7 - tmp6; tmp13 = tmp7 - (( tmp12 ) >> 1); /* 7pi/16 = 3/16u -3/16d: alter sign to get positive scaling factor */ dataptr[DCTSIZE*7] = (((tmp13 << 1) + tmp13 ) >> 4) - tmp10; dataptr[DCTSIZE*1] = tmp13 - (((dataptr[DCTSIZE*7] << 1) + dataptr[DCTSIZE*7] ) >> 4); /* 3pi/16 = */ /* new : 5/8 and -7/16 */ dataptr[DCTSIZE*5] = tmp11 + (((tmp12 << 2) + tmp12 ) >> 3); dataptr[DCTSIZE*3] = tmp12 - (((dataptr[DCTSIZE*5] << 3) - dataptr[DCTSIZE*5] ) >> 4); dataptr++; /* advance pointer to next column */ }} // lossless ot not. }/************************************** * problem with Sachin's code: * 1: it's verison binDCT-C. * 2: X[0] and X[4]: butterfly, not lifting. * 3: Neg scaling required. ************************************** */#endif /* DCT_BIN_B1_SUPPORTED */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -