📄 rtmp_tkip.c
字号:
IRQL = DISPATCH_LEVEL Note: ========================================================================*/BOOLEAN RTMPTkipCompareMICValue( IN PRTMP_ADAPTER pAd, IN PUCHAR pSrc, IN PUCHAR pDA, IN PUCHAR pSA, IN PUCHAR pMICKey, IN UCHAR UserPriority, IN UINT Len){ UCHAR OldMic[8]; ULONG Priority = UserPriority; // Init MIC value calculation RTMPTkipSetMICKey(&pAd->PrivateInfo.Rx, pMICKey); // DA RTMPTkipAppend(&pAd->PrivateInfo.Rx, pDA, MAC_ADDR_LEN); // SA RTMPTkipAppend(&pAd->PrivateInfo.Rx, pSA, MAC_ADDR_LEN); // Priority + 3 bytes of 0 RTMPTkipAppend(&pAd->PrivateInfo.Rx, (PUCHAR)&Priority, 4); // Calculate MIC value from plain text data RTMPTkipAppend(&pAd->PrivateInfo.Rx, pSrc, Len); // Get MIC valude from received frame NdisMoveMemory(OldMic, pSrc + Len, 8); // Get MIC value from decrypted plain data RTMPTkipGetMIC(&pAd->PrivateInfo.Rx); // Move MIC value from MSDU, this steps should move to data path. // Since the MIC value might cross MPDUs. if(!NdisEqualMemory(pAd->PrivateInfo.Rx.MIC, OldMic, 8)) { DBGPRINT_RAW(RT_DEBUG_ERROR, ("RTMPTkipCompareMICValue(): TKIP MIC Error !\n")); //MIC error. return (FALSE); } return (TRUE);}/* ======================================================================== Routine Description: Compare MIC value of received MSDU Arguments: pAd Pointer to our adapter pLLC LLC header pSrc Pointer to the received Plain text data pDA Pointer to DA address pSA Pointer to SA address pMICKey pointer to MIC Key Len the length of the received plain text data exclude MIC value Return Value: TRUE MIC value matched FALSE MIC value mismatched IRQL = DISPATCH_LEVEL Note: ========================================================================*/BOOLEAN RTMPTkipCompareMICValueWithLLC( IN PRTMP_ADAPTER pAd, IN PUCHAR pLLC, IN PUCHAR pSrc, IN PUCHAR pDA, IN PUCHAR pSA, IN PUCHAR pMICKey, IN UINT Len){ UCHAR OldMic[8]; ULONG Priority = 0; // Init MIC value calculation RTMPTkipSetMICKey(&pAd->PrivateInfo.Rx, pMICKey); // DA RTMPTkipAppend(&pAd->PrivateInfo.Rx, pDA, MAC_ADDR_LEN); // SA RTMPTkipAppend(&pAd->PrivateInfo.Rx, pSA, MAC_ADDR_LEN); // Priority + 3 bytes of 0 RTMPTkipAppend(&pAd->PrivateInfo.Rx, (PUCHAR)&Priority, 4); // Start with LLC header RTMPTkipAppend(&pAd->PrivateInfo.Rx, pLLC, 8); // Calculate MIC value from plain text data RTMPTkipAppend(&pAd->PrivateInfo.Rx, pSrc, Len); // Get MIC valude from received frame NdisMoveMemory(OldMic, pSrc + Len, 8); // Get MIC value from decrypted plain data RTMPTkipGetMIC(&pAd->PrivateInfo.Rx); // Move MIC value from MSDU, this steps should move to data path. // Since the MIC value might cross MPDUs. if(!NdisEqualMemory(pAd->PrivateInfo.Rx.MIC, OldMic, 8)) { DBGPRINT_RAW(RT_DEBUG_ERROR, ("RTMPTkipCompareMICValueWithLLC(): TKIP MIC Error !\n")); //MIC error. return (FALSE); } return (TRUE);}/* ======================================================================== Routine Description: Copy frame from waiting queue into relative ring buffer and set appropriate ASIC register to kick hardware transmit function Arguments: pAd Pointer to our adapter PNDIS_PACKET Pointer to Ndis Packet for MIC calculation pEncap Pointer to LLC encap data LenEncap Total encap length, might be 0 which indicates no encap Return Value: None IRQL = DISPATCH_LEVEL Note: ========================================================================*/VOID RTMPCalculateMICValue( IN PRTMP_ADAPTER pAd, IN PNDIS_PACKET pPacket, IN PUCHAR pEncap, IN PCIPHER_KEY pKey, IN UCHAR apidx){ PACKET_INFO PacketInfo; PUCHAR pSrcBufVA; UINT SrcBufLen; PUCHAR pSrc; UCHAR UserPriority; UCHAR vlan_offset = 0; RTMP_QueryPacketInfo(pPacket, &PacketInfo, &pSrcBufVA, &SrcBufLen); UserPriority = RTMP_GET_PACKET_UP(pPacket); pSrc = pSrcBufVA; // determine if this is a vlan packet if (((*(pSrc + 12) << 8) + *(pSrc + 13)) == 0x8100) vlan_offset = 4; #ifdef CONFIG_STA_SUPPORT#endif // CONFIG_STA_SUPPORT // { RTMPInitMICEngine( pAd, pKey->Key, pSrc, pSrc + 6, UserPriority, pKey->TxMic); } if (pEncap != NULL) { // LLC encapsulation RTMPTkipAppend(&pAd->PrivateInfo.Tx, pEncap, 6); // Protocol Type RTMPTkipAppend(&pAd->PrivateInfo.Tx, pSrc + 12 + vlan_offset, 2); } SrcBufLen -= (14 + vlan_offset); pSrc += (14 + vlan_offset); do { if (SrcBufLen > 0) { RTMPTkipAppend(&pAd->PrivateInfo.Tx, pSrc, SrcBufLen); } break; // No need handle next packet } while (TRUE); // End of copying payload // Compute the final MIC Value RTMPTkipGetMIC(&pAd->PrivateInfo.Tx);}/************************************************************/ /* tkip_sbox() */ /* Returns a 16 bit value from a 64K entry table. The Table */ /* is synthesized from two 256 entry byte wide tables. */ /************************************************************/ UINT tkip_sbox(UINT index) { UINT index_low; UINT index_high; UINT left, right; index_low = (index % 256); index_high = ((index >> 8) % 256); left = Tkip_Sbox_Lower[index_low] + (Tkip_Sbox_Upper[index_low] * 256); right = Tkip_Sbox_Upper[index_high] + (Tkip_Sbox_Lower[index_high] * 256); return (left ^ right); }UINT rotr1(UINT a) { unsigned int b; if ((a & 0x01) == 0x01) { b = (a >> 1) | 0x8000; } else { b = (a >> 1) & 0x7fff; } b = b % 65536; return b; } VOID RTMPTkipMixKey( UCHAR *key, UCHAR *ta, ULONG pnl, /* Least significant 16 bits of PN */ ULONG pnh, /* Most significant 32 bits of PN */ UCHAR *rc4key, UINT *p1k){ UINT tsc0; UINT tsc1; UINT tsc2; UINT ppk0; UINT ppk1; UINT ppk2; UINT ppk3; UINT ppk4; UINT ppk5; INT i; INT j; tsc0 = (unsigned int)((pnh >> 16) % 65536); /* msb */ tsc1 = (unsigned int)(pnh % 65536); tsc2 = (unsigned int)(pnl % 65536); /* lsb */ /* Phase 1, step 1 */ p1k[0] = tsc1; p1k[1] = tsc0; p1k[2] = (UINT)(ta[0] + (ta[1]*256)); p1k[3] = (UINT)(ta[2] + (ta[3]*256)); p1k[4] = (UINT)(ta[4] + (ta[5]*256)); /* Phase 1, step 2 */ for (i=0; i<8; i++) { j = 2*(i & 1); p1k[0] = (p1k[0] + tkip_sbox( (p1k[4] ^ ((256*key[1+j]) + key[j])) % 65536 )) % 65536; p1k[1] = (p1k[1] + tkip_sbox( (p1k[0] ^ ((256*key[5+j]) + key[4+j])) % 65536 )) % 65536; p1k[2] = (p1k[2] + tkip_sbox( (p1k[1] ^ ((256*key[9+j]) + key[8+j])) % 65536 )) % 65536; p1k[3] = (p1k[3] + tkip_sbox( (p1k[2] ^ ((256*key[13+j]) + key[12+j])) % 65536 )) % 65536; p1k[4] = (p1k[4] + tkip_sbox( (p1k[3] ^ (((256*key[1+j]) + key[j]))) % 65536 )) % 65536; p1k[4] = (p1k[4] + i) % 65536; } /* Phase 2, Step 1 */ ppk0 = p1k[0]; ppk1 = p1k[1]; ppk2 = p1k[2]; ppk3 = p1k[3]; ppk4 = p1k[4]; ppk5 = (p1k[4] + tsc2) % 65536; /* Phase2, Step 2 */ ppk0 = ppk0 + tkip_sbox( (ppk5 ^ ((256*key[1]) + key[0])) % 65536); ppk1 = ppk1 + tkip_sbox( (ppk0 ^ ((256*key[3]) + key[2])) % 65536); ppk2 = ppk2 + tkip_sbox( (ppk1 ^ ((256*key[5]) + key[4])) % 65536); ppk3 = ppk3 + tkip_sbox( (ppk2 ^ ((256*key[7]) + key[6])) % 65536); ppk4 = ppk4 + tkip_sbox( (ppk3 ^ ((256*key[9]) + key[8])) % 65536); ppk5 = ppk5 + tkip_sbox( (ppk4 ^ ((256*key[11]) + key[10])) % 65536); ppk0 = ppk0 + rotr1(ppk5 ^ ((256*key[13]) + key[12])); ppk1 = ppk1 + rotr1(ppk0 ^ ((256*key[15]) + key[14])); ppk2 = ppk2 + rotr1(ppk1); ppk3 = ppk3 + rotr1(ppk2); ppk4 = ppk4 + rotr1(ppk3); ppk5 = ppk5 + rotr1(ppk4); /* Phase 2, Step 3 */ /* Phase 2, Step 3 */ tsc0 = (unsigned int)((pnh >> 16) % 65536); /* msb */ tsc1 = (unsigned int)(pnh % 65536); tsc2 = (unsigned int)(pnl % 65536); /* lsb */ rc4key[0] = (tsc2 >> 8) % 256; rc4key[1] = (((tsc2 >> 8) % 256) | 0x20) & 0x7f; rc4key[2] = tsc2 % 256; rc4key[3] = ((ppk5 ^ ((256*key[1]) + key[0])) >> 1) % 256; rc4key[4] = ppk0 % 256; rc4key[5] = (ppk0 >> 8) % 256; rc4key[6] = ppk1 % 256; rc4key[7] = (ppk1 >> 8) % 256; rc4key[8] = ppk2 % 256; rc4key[9] = (ppk2 >> 8) % 256; rc4key[10] = ppk3 % 256; rc4key[11] = (ppk3 >> 8) % 256; rc4key[12] = ppk4 % 256; rc4key[13] = (ppk4 >> 8) % 256; rc4key[14] = ppk5 % 256; rc4key[15] = (ppk5 >> 8) % 256; }/************************************************//* construct_mic_header1() *//* Builds the first MIC header block from *//* header fields. *//************************************************/void construct_mic_header1( unsigned char *mic_header1, int header_length, unsigned char *mpdu){ mic_header1[0] = (unsigned char)((header_length - 2) / 256); mic_header1[1] = (unsigned char)((header_length - 2) % 256); mic_header1[2] = mpdu[0] & 0xcf; /* Mute CF poll & CF ack bits */ mic_header1[3] = mpdu[1] & 0xc7; /* Mute retry, more data and pwr mgt bits */ mic_header1[4] = mpdu[4]; /* A1 */ mic_header1[5] = mpdu[5]; mic_header1[6] = mpdu[6]; mic_header1[7] = mpdu[7]; mic_header1[8] = mpdu[8]; mic_header1[9] = mpdu[9]; mic_header1[10] = mpdu[10]; /* A2 */ mic_header1[11] = mpdu[11]; mic_header1[12] = mpdu[12]; mic_header1[13] = mpdu[13]; mic_header1[14] = mpdu[14]; mic_header1[15] = mpdu[15];}/************************************************//* construct_mic_header2() *//* Builds the last MIC header block from *//* header fields. *//************************************************/void construct_mic_header2( unsigned char *mic_header2, unsigned char *mpdu, int a4_exists, int qc_exists){ int i; for (i = 0; i<16; i++) mic_header2[i]=0x00; mic_header2[0] = mpdu[16]; /* A3 */ mic_header2[1] = mpdu[17]; mic_header2[2] = mpdu[18]; mic_header2[3] = mpdu[19]; mic_header2[4] = mpdu[20]; mic_header2[5] = mpdu[21]; // In Sequence Control field, mute sequence numer bits (12-bit) mic_header2[6] = mpdu[22] & 0x0f; /* SC */ mic_header2[7] = 0x00; /* mpdu[23]; */ if ((!qc_exists) & a4_exists) { for (i=0;i<6;i++) mic_header2[8+i] = mpdu[24+i]; /* A4 */ } if (qc_exists && (!a4_exists)) { mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */ mic_header2[9] = mpdu[25] & 0x00; } if (qc_exists && a4_exists) { for (i=0;i<6;i++) mic_header2[8+i] = mpdu[24+i]; /* A4 */ mic_header2[14] = mpdu[30] & 0x0f; mic_header2[15] = mpdu[31] & 0x00; }}/************************************************//* construct_mic_iv() *//* Builds the MIC IV from header fields and PN *//************************************************/void construct_mic_iv( unsigned char *mic_iv, int qc_exists, int a4_exists, unsigned char *mpdu, unsigned int payload_length, unsigned char *pn_vector){ int i; mic_iv[0] = 0x59; if (qc_exists && a4_exists) mic_iv[1] = mpdu[30] & 0x0f; /* QoS_TC */ if (qc_exists && !a4_exists) mic_iv[1] = mpdu[24] & 0x0f; /* mute bits 7-4 */ if (!qc_exists) mic_iv[1] = 0x00; for (i = 2; i < 8; i++) mic_iv[i] = mpdu[i + 8]; /* mic_iv[2:7] = A2[0:5] = mpdu[10:15] */#ifdef CONSISTENT_PN_ORDER for (i = 8; i < 14; i++) mic_iv[i] = pn_vector[i - 8]; /* mic_iv[8:13] = PN[0:5] */#else for (i = 8; i < 14; i++) mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */#endif i = (payload_length / 256); i = (payload_length % 256); mic_iv[14] = (unsigned char) (payload_length / 256); mic_iv[15] = (unsigned char) (payload_length % 256);}/************************************//* bitwise_xor() *//* A 128 bit, bitwise exclusive or *//************************************/void bitwise_xor(unsigned char *ina, unsigned char *inb, unsigned char *out){ int i; for (i=0; i<16; i++) { out[i] = ina[i] ^ inb[i]; }}void aes128k128d(unsigned char *key, unsigned char *data, unsigned char *ciphertext){ int round; int i; unsigned char intermediatea[16]; unsigned char intermediateb[16]; unsigned char round_key[16]; for(i=0; i<16; i++) round_key[i] = key[i]; for (round = 0; round < 11; round++) { if (round == 0) { xor_128(round_key, data, ciphertext); next_key(round_key, round); } else if (round == 10) { byte_sub(ciphertext, intermediatea); shift_row(intermediatea, intermediateb); xor_128(intermediateb, round_key, ciphertext); } else /* 1 - 9 */ { byte_sub(ciphertext, intermediatea); shift_row(intermediatea, intermediateb); mix_column(&intermediateb[0], &intermediatea[0]); mix_column(&intermediateb[4], &intermediatea[4]); mix_column(&intermediateb[8], &intermediatea[8]); mix_column(&intermediateb[12], &intermediatea[12]); xor_128(intermediatea, round_key, ciphertext); next_key(round_key, round); } }}void construct_ctr_preload( unsigned char *ctr_preload, int a4_exists, int qc_exists, unsigned char *mpdu, unsigned char *pn_vector, int c){ int i = 0; for (i=0; i<16; i++) ctr_preload[i] = 0x00; i = 0; ctr_preload[0] = 0x01; /* flag */ if (qc_exists && a4_exists) ctr_preload[1] = mpdu[30] & 0x0f; /* QoC_Control */ if (qc_exists && !a4_exists) ctr_preload[1] = mpdu[24] & 0x0f; for (i = 2; i < 8; i++) ctr_preload[i] = mpdu[i + 8]; /* ctr_preload[2:7] = A2[0:5] = mpdu[10:15] */#ifdef CONSISTENT_PN_ORDER for (i = 8; i < 14; i++) ctr_preload[i] = pn_vector[i - 8]; /* ctr_preload[8:13] = PN[0:5] */#else for (i = 8; i < 14; i++) ctr_preload[i] = pn_vector[13 - i]; /* ctr_preload[8:13] = PN[5:0] */#endif ctr_preload[14] = (unsigned char) (c / 256); // Ctr ctr_preload[15] = (unsigned char) (c % 256);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -