📄 rfc2045.txt
字号:
quoted-printable encoded body inside one or more multipart entities,
to ensure that the boundary delimiter does not appear anywhere in the
encoded body. (A good strategy is to choose a boundary that includes
a character sequence such as "=_" which can never appear in a
quoted-printable body. See the definition of multipart messages in
RFC 2046.)
NOTE: The quoted-printable encoding represents something of a
compromise between readability and reliability in transport. Bodies
encoded with the quoted-printable encoding will work reliably over
most mail gateways, but may not work perfectly over a few gateways,
notably those involving translation into EBCDIC. A higher level of
confidence is offered by the base64 Content-Transfer-Encoding. A way
to get reasonably reliable transport through EBCDIC gateways is to
also quote the US-ASCII characters
!"#$@[\]^`{|}~
according to rule #1.
Because quoted-printable data is generally assumed to be line-
oriented, it is to be expected that the representation of the breaks
between the lines of quoted-printable data may be altered in
transport, in the same manner that plain text mail has always been
altered in Internet mail when passing between systems with differing
newline conventions. If such alterations are likely to constitute a
Freed & Borenstein Standards Track [Page 21]
RFC 2045 Internet Message Bodies November 1996
corruption of the data, it is probably more sensible to use the
base64 encoding rather than the quoted-printable encoding.
NOTE: Several kinds of substrings cannot be generated according to
the encoding rules for the quoted-printable content-transfer-
encoding, and hence are formally illegal if they appear in the output
of a quoted-printable encoder. This note enumerates these cases and
suggests ways to handle such illegal substrings if any are
encountered in quoted-printable data that is to be decoded.
(1) An "=" followed by two hexadecimal digits, one or both
of which are lowercase letters in "abcdef", is formally
illegal. A robust implementation might choose to
recognize them as the corresponding uppercase letters.
(2) An "=" followed by a character that is neither a
hexadecimal digit (including "abcdef") nor the CR
character of a CRLF pair is illegal. This case can be
the result of US-ASCII text having been included in a
quoted-printable part of a message without itself
having been subjected to quoted-printable encoding. A
reasonable approach by a robust implementation might be
to include the "=" character and the following
character in the decoded data without any
transformation and, if possible, indicate to the user
that proper decoding was not possible at this point in
the data.
(3) An "=" cannot be the ultimate or penultimate character
in an encoded object. This could be handled as in case
(2) above.
(4) Control characters other than TAB, or CR and LF as
parts of CRLF pairs, must not appear. The same is true
for octets with decimal values greater than 126. If
found in incoming quoted-printable data by a decoder, a
robust implementation might exclude them from the
decoded data and warn the user that illegal characters
were discovered.
(5) Encoded lines must not be longer than 76 characters,
not counting the trailing CRLF. If longer lines are
found in incoming, encoded data, a robust
implementation might nevertheless decode the lines, and
might report the erroneous encoding to the user.
Freed & Borenstein Standards Track [Page 22]
RFC 2045 Internet Message Bodies November 1996
WARNING TO IMPLEMENTORS: If binary data is encoded in quoted-
printable, care must be taken to encode CR and LF characters as "=0D"
and "=0A", respectively. In particular, a CRLF sequence in binary
data should be encoded as "=0D=0A". Otherwise, if CRLF were
represented as a hard line break, it might be incorrectly decoded on
platforms with different line break conventions.
For formalists, the syntax of quoted-printable data is described by
the following grammar:
quoted-printable := qp-line *(CRLF qp-line)
qp-line := *(qp-segment transport-padding CRLF)
qp-part transport-padding
qp-part := qp-section
; Maximum length of 76 characters
qp-segment := qp-section *(SPACE / TAB) "="
; Maximum length of 76 characters
qp-section := [*(ptext / SPACE / TAB) ptext]
ptext := hex-octet / safe-char
safe-char := <any octet with decimal value of 33 through
60 inclusive, and 62 through 126>
; Characters not listed as "mail-safe" in
; RFC 2049 are also not recommended.
hex-octet := "=" 2(DIGIT / "A" / "B" / "C" / "D" / "E" / "F")
; Octet must be used for characters > 127, =,
; SPACEs or TABs at the ends of lines, and is
; recommended for any character not listed in
; RFC 2049 as "mail-safe".
transport-padding := *LWSP-char
; Composers MUST NOT generate
; non-zero length transport
; padding, but receivers MUST
; be able to handle padding
; added by message transports.
IMPORTANT: The addition of LWSP between the elements shown in this
BNF is NOT allowed since this BNF does not specify a structured
header field.
Freed & Borenstein Standards Track [Page 23]
RFC 2045 Internet Message Bodies November 1996
6.8. Base64 Content-Transfer-Encoding
The Base64 Content-Transfer-Encoding is designed to represent
arbitrary sequences of octets in a form that need not be humanly
readable. The encoding and decoding algorithms are simple, but the
encoded data are consistently only about 33 percent larger than the
unencoded data. This encoding is virtually identical to the one used
in Privacy Enhanced Mail (PEM) applications, as defined in RFC 1421.
A 65-character subset of US-ASCII is used, enabling 6 bits to be
represented per printable character. (The extra 65th character, "=",
is used to signify a special processing function.)
NOTE: This subset has the important property that it is represented
identically in all versions of ISO 646, including US-ASCII, and all
characters in the subset are also represented identically in all
versions of EBCDIC. Other popular encodings, such as the encoding
used by the uuencode utility, Macintosh binhex 4.0 [RFC-1741], and
the base85 encoding specified as part of Level 2 PostScript, do not
share these properties, and thus do not fulfill the portability
requirements a binary transport encoding for mail must meet.
The encoding process represents 24-bit groups of input bits as output
strings of 4 encoded characters. Proceeding from left to right, a
24-bit input group is formed by concatenating 3 8bit input groups.
These 24 bits are then treated as 4 concatenated 6-bit groups, each
of which is translated into a single digit in the base64 alphabet.
When encoding a bit stream via the base64 encoding, the bit stream
must be presumed to be ordered with the most-significant-bit first.
That is, the first bit in the stream will be the high-order bit in
the first 8bit byte, and the eighth bit will be the low-order bit in
the first 8bit byte, and so on.
Each 6-bit group is used as an index into an array of 64 printable
characters. The character referenced by the index is placed in the
output string. These characters, identified in Table 1, below, are
selected so as to be universally representable, and the set excludes
characters with particular significance to SMTP (e.g., ".", CR, LF)
and to the multipart boundary delimiters defined in RFC 2046 (e.g.,
"-").
Freed & Borenstein Standards Track [Page 24]
RFC 2045 Internet Message Bodies November 1996
Table 1: The Base64 Alphabet
Value Encoding Value Encoding Value Encoding Value Encoding
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w (pad) =
15 P 32 g 49 x
16 Q 33 h 50 y
The encoded output stream must be represented in lines of no more
than 76 characters each. All line breaks or other characters not
found in Table 1 must be ignored by decoding software. In base64
data, characters other than those in Table 1, line breaks, and other
white space probably indicate a transmission error, about which a
warning message or even a message rejection might be appropriate
under some circumstances.
Special processing is performed if fewer than 24 bits are available
at the end of the data being encoded. A full encoding quantum is
always completed at the end of a body. When fewer than 24 input bits
are available in an input group, zero bits are added (on the right)
to form an integral number of 6-bit groups. Padding at the end of
the data is performed using the "=" character. Since all base64
input is an integral number of octets, only the following cases can
arise: (1) the final quantum of encoding input is an integral
multiple of 24 bits; here, the final unit of encoded output will be
an integral multiple of 4 characters with no "=" padding, (2) the
final quantum of encoding input is exactly 8 bits; here, the final
unit of encoded output will be two characters followed by two "="
padding characters, or (3) the final quantum of encoding input is
exactly 16 bits; here, the final unit of encoded output will be three
characters followed by one "=" padding character.
Because it is used only for padding at the end of the data, the
occurrence of any "=" characters may be taken as evidence that the
end of the data has been reached (without truncation in transit). No
Freed & Borenstein Standards Track [Page 25]
RFC 2045 Internet Message Bodies November 1996
such assurance is possible, however, when the number of octets
transmitted was a multiple of three and no "=" characters are
present.
Any characters outside of the base64 alphabet are to be ignored in
base64-encoded data.
Care must be taken to use the proper octets for line breaks if base64
encoding is applied directly to text material that has not been
converted to canonical form. In particular, text line breaks must be
converted into CRLF sequences prior to base64 encoding. The
important thing to note is that this may be done directly by the
encoder rather than in a prior canonicalization step in some
implementations.
NOTE: There is no need to worry about quoting potential boundary
delimiters within base64-encoded bodies within multipart entities
because no hyphen characters are used in the base64 encoding.
7. Content-ID Header Field
In constructing a high-level user agent, it may be desirable to allow
one body to make reference to another. Accordingly, bodies may be
labelled using the "Content-ID" header field, which is syntactically
identical to
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -