📄 makemesh.c
字号:
/* Copyright (c) Mark J. Kilgard, 1998. *//* This program is freely distributable without licensing fees and is provided without guarantee or warrantee expressed or implied. This program is -not- in the public domain. *//* makemesh.c - generates mesh geometry for sphere map construction */#include <assert.h>#include <stdlib.h>#include <stdio.h>#include <GL/glut.h>#include <math.h>#include "smapmesh.h"/* (x,y,z) reflection vector --> (s,t) sphere map coordinates */voidrvec2st(float v[3], float st[2]){ double m; /* In Section 2.10.4 ("Generating texture coordinates") of the OpenGL 1.1 specification, you will find the GL_SPHERE_MAP equations: n' = normal after transformation to eye coordinates u = unit vector from origin to vertex in eye coordinates (rx, ry, rz) = u - 2 * n' * transpose(n') * u m = 2 * sqrt(rx^2 + ry^2 + (rz + 1)^2)) s = rx/m + 0.5 t = ry/m + 0.5 The equation for calculating (rx, ry, rz) is the equation for calculating the reflection vector for a surface and observer. The explanation and derivation for this equation is found in Roger's "Procedural Elements for Computer Graphics" 2nd ed. in Section 5-5 ("Determining the Reflection Vector"). Note that Roger's convention has the Z axis in the opposite direction from the OpenGL convention. */ m = 2 * sqrt(v[0]*v[0] + v[1]*v[1] + (v[2]+1)*(v[2]+1)); st[0] = v[0]/m + 0.5; st[1] = v[1]/m + 0.5;}/* (s,t) sphere map coordinate --> reflection verctor (x,y,z) */voidst2rvec(float s, float t, float *xp, float *yp, float *zp){ double rx, ry, rz; double tmp1, tmp2; /* Using algebra to invert the sphere mapping equations shown above in rvec2st, you get: rx = 2*sqrt(-4*s^2 + 4*s - 4*t^2 + 4*t - 1)*(2*s-1) ry = 2*sqrt(-4*s^2 + 4*s - 4*t^2 + 4*t - 1)*(2*t-1) rz = -8*s^2 + 8*s - 8*t^2 + 8*t - 3 The C code below eliminates common subexpressions. */ tmp1 = s*(1-s) + t*(1-t); tmp2 = 2 * sqrt(4*tmp1 - 1); rx = tmp2 * (2*s-1); ry = tmp2 * (2*t-1); rz = 8 * tmp1 - 3; *xp = (float) rx; *yp = (float) ry; *zp = (float) rz;}/* For best results (ie, to avoid cracks in the sphere map construction, XSTEPS, YSTEPS, and SPOKES should all be equal. *//* Increasing the nSTEPS and RINGS constants below will give you a better approximation to the sphere map image warp at the cost of more polygons to render the image warp. My bet is that no will be able to the improved quality of a higher level of tessellation. */STXY face[5][YSTEPS][XSTEPS];STXY back[4][RINGS+EDGE_EXTEND][SPOKES];static struct { int xl; int yl; int zl; int swap; /* swap final (s,t) */ int flip; /* flip final s or t, ie. [0..1] --> [1..0] */ float dir;} faceInfo[5] = { { 0, 1, 2, 0, 1.0, 1.0 }, /* front */ { 0, 2, 1, 0, -1.0, 1.0 }, /* top */ { 0, 2, 1, 0, 1.0, -1.0 }, /* bottom */ { 1, 2, 0, 1, -1.0, 1.0 }, /* left */ { 1, 2, 0, 1, 1.0, -1.0 }, /* right */};static struct { int xl; int yl; float dir;} edgeInfo[4] = { { 0, 1, -1.0 }, { 0, 1, 1.0 }, { 1, 0, -1.0 }, { 1, 0, 1.0 }};voidmakeSphereMapMesh(void){ float st[2]; /* (s,t) coordinate */ /* range=[0..1,0..1] */ float v[3]; /* (x,y,z) location on cube map */ /* range=[-1..1,-1..1,-1..1] */ float rv[3]; /* reflection vector, ie. cube map location */ /* normalized onto unit sphere */ float len; /* distance from v[3] to origin */ /* for converting to rv[3] */ int side; /* which of 5 faces (all but back face) */ int i, j; int xl, yl, zl; /* renamed X, Y, Z index */ int swap; int flip; int edge; /* which edge of back face */ float sc, tc; /* singularity (s,t) on back face circle */ /* for the front and four side faces */ for (side=0; side<5; side++) { /* use faceInfo to parameterize face construction */ xl = faceInfo[side].xl; yl = faceInfo[side].yl; zl = faceInfo[side].zl; swap = faceInfo[side].swap; flip = faceInfo[side].flip; /* cube map "Z" coordinate */ v[zl] = faceInfo[side].dir; for (i=0; i<YSTEPS; i++) { /* cube map "Y" coordinate */ v[yl] = 2.0/(YSTEPS-1) * i - 1.0; for (j=0; j<XSTEPS; j++) { /* cube map "X" coordinate */ v[xl] = 2.0/(XSTEPS-1) * j - 1.0; /* normalize cube map location to construct */ /* reflection vector */ len = sqrt(1.0 + v[xl]*v[xl] + v[yl]*v[yl]); rv[0] = v[0]/len; rv[1] = v[1]/len; rv[2] = v[2]/len; /* map reflection vector to sphere map (s,t) */ /* NOTE: face[side][i][j] (x,y) gets updated */ rvec2st(rv, &face[side][i][j].x); /* update texture coordinate, */ /* normalize [-1..1,-1..1] to [0..1,0..1] */ if (!swap) { face[side][i][j].s = (-v[xl] + 1.0)/2.0; face[side][i][j].t = (flip*v[yl] + 1.0)/2.0; } else { face[side][i][j].s = (flip*-v[yl] + 1.0)/2.0; face[side][i][j].t = (v[xl] + 1.0)/2.0; } } } } /* The back face must be specially handled. The center point in the back face of a cube map becomes a a singularity around the circular edge of a sphere map. */ /* Carefully work from each edge of the back face to center of back face mapped to the outside of the sphere map. */ /* cube map "Z" coordinate, always -1 since backface */ v[2] = -1; /* for each edge */ /* [x=-1, y=-1..1, z=-1] */ /* [x= 1, y=-1..1, z=-1] */ /* [x=-1..1, y=-1, z=-1] */ /* [x=-1..1, y= 1, z=-1] */ for (edge=0; edge<4; edge++) { /* cube map "X" coordinate */ v[edgeInfo[edge].xl] = edgeInfo[edge].dir; for (j=0; j<SPOKES; j++) { /* cube map "Y" coordinate */ v[edgeInfo[edge].yl] = 2.0/(SPOKES-1) * j - 1.0; /* normalize cube map location to construct */ /* reflection vector */ len = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]); rv[0] = v[0]/len; rv[1] = v[1]/len; rv[2] = v[2]/len; /* Map reflection vector to sphere map (s,t). */ rvec2st(rv, st); /* determine distinance from the center of sphere */ /* map (0.5,0.5) to (s,t) */ len = sqrt((st[0]-0.5)*(st[0]-0.5) + (st[1]-0.5)*(st[1]-0.5)); /* calculate (s,t) location extended to the singularity */ /* at the center of the back face (ie, extend to */ /* circle edge of the sphere map) */ sc = (st[0]-0.5)/len * 0.5 + 0.5; tc = (st[1]-0.5)/len * 0.5 + 0.5; /* (s,t) at back face edge */ back[edge][0][j].s = (-v[0] + 1.0)/2.0; back[edge][0][j].t = (-v[1] + 1.0)/2.0; back[edge][0][j].x = st[0]; back[edge][0][j].y = st[1]; /* If just two rings, we just generate a back face edge vertex and a center vertex (2 rings), but if there are more rings, we carefully interpolate between the edge and center vertices. Notice how st2rvec is used to map the interpolated (s,t) into a reflection vector that must then be extended to the back cube face (it is not correct to just interpolate the texture coordinates!). */ if (RINGS > 2) { float s, t; /* interpolated (s,t) */ float ds, dt; /* delta s and delta t */ float x, y, z; /* Start interpolating from the edge. */ s = st[0]; t = st[1]; /* Calculate delta s and delta t for interpolation. */ ds = (sc - s) / (RINGS-1); dt = (tc - t) / (RINGS-1); for (i=1; i<RINGS-1; i++) { /* Incremental interpolation of (s,t). */ s = s + ds; t = t + dt; /* Calculate reflection vector from interpolated (s,t). */ st2rvec(s, t, &x, &y, &z); /* Assert that z must be on the back cube face. */ assert(z <= -sqrt(1.0/3.0)); /* Extend reflection vector out of back cube face. */ /* Note: z is negative value so negate z to avoid */ /* inverting x and y! */ x = x / -z; y = y / -z; back[edge][i][j].s = (-x + 1.0)/2.0; back[edge][i][j].t = (-y + 1.0)/2.0; back[edge][i][j].x = s; back[edge][i][j].y = t; } } /* (s,t) at circle edge of the sphere map is ALWAYS */ /* at center of back cube map face */ back[edge][RINGS-1][j].s = 0.5; back[edge][RINGS-1][j].t = 0.5; /* location of singularity at the edge of the sphere map */ back[edge][RINGS-1][j].x = sc; back[edge][RINGS-1][j].y = tc;#ifdef SPHERE_MAP_EDGE_EXTEND /* Add an extra ring to avoid seeing the */ /* tessellation boundary of the sphere map's sphere */ back[edge][RINGS][j].s = 0.5; back[edge][RINGS][j].t = 0.5; /* 0.33 below is a fudge factor. */ back[edge][RINGS][j].x = sc + 0.33*(sc - st[0]); back[edge][RINGS][j].y = tc + 0.33*(tc - st[1]);#endif } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -