📄 page_97.html
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <title>page_97</title> <link rel="stylesheet" href="reset.css" type="text/css" media="all"> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> </head> <body> <table summary="top nav" border="0" width="100%"> <tr> <td align="left" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_96.html">< previous page</a></td> <td id="ebook_previous" align="center" width="40%" style="background: #EEF3E2"><strong style="color: #2F4F4F; font-size: 120%;">page_97</strong></td> <td align="right" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_98.html">next page ></a></td> </tr> <tr> <td id="ebook_page" align="left" colspan="3" style="background: #ffffff; padding: 20px;"> <table border="0" width="100%" cellpadding="0"><tr><td align="center"> <table border="0" cellpadding="2" cellspacing="0" width="100%"><tr><td align="left"></td> <td align="right"></td> </tr></table></td></tr><tr><td align="left"><p></p><table border="0" cellspacing="0" cellpadding="0" width="100%"><tr><td align="right"><font face="Times New Roman, Times, Serif" size="2" color="#FF0000">Page 97</font></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">3. If x </font><font face="Symbol" size="3">脦</font><font face="Times New Roman, Times, Serif" size="3"> <i>R</i></font><i><font face="Times New Roman, Times, Serif" size="2"><sup>n</sup></font></i><font face="Times New Roman, Times, Serif" size="2"><sup></sup></font><font face="Times New Roman, Times, Serif" size="3"> is the state of a dynamic system聽which is free to change according to x(<i>k</i>) = </font><font face="Symbol" size="3">F</font><font face="Times New Roman, Times, Serif" size="3">(<i>k</i>)x(<i>k </i>- 1) + </font><font face="Symbol" size="3">G<i>w</i></font><font face="Times New Roman, Times, Serif" size="3">(<i>k </i>- 1), where </font><font face="Symbol" size="3">F</font><font face="Times New Roman, Times, Serif" size="3">(<i>k</i>) </font><font face="Symbol" size="3">脦</font><font face="Times New Roman, Times, Serif" size="3"> <i>R</i></font><i><font face="Times New Roman, Times, Serif" size="2"><sup>n</sup></font></i><font face="Times New Roman, Times, Serif" size="2"><sup></sup></font><sup><font face="Symbol" size="2">麓</font><font face="Times New Roman, Times, Serif" size="2"><i>n</i></font></sup><font face="Times New Roman, Times, Serif" size="2"></font><font face="Times New Roman, Times, Serif" size="3"> is known and </font><font face="Symbol" size="3"><i>w</i></font><font face="Times New Roman, Times, Serif" size="3">(<i>k</i>) </font><font face="Symbol" size="3">脦</font><font face="Times New Roman, Times, Serif" size="3"> <i>R</i></font><i><font face="Times New Roman, Times, Serif" size="2"><sup>n</sup></font></i><font face="Times New Roman, Times, Serif" size="2"><sup></sup></font><font face="Times New Roman, Times, Serif" size="3"> is a zero-mean random vectorhow can the estimate of x at time <i>k </i>- 1 and the measurement <i>y</i></font><i><font face="Times New Roman, Times, Serif" size="1"><sub>k</sub></font></i><font face="Times New Roman, Times, Serif" size="1"><sub></sub></font><font face="Times New Roman, Times, Serif" size="3"> be combined to provide an optimal estimate of x at time <i>k</i>?</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">As the above discussion shows, each question is a natural extension of the one before it, and as the following sections show, the solutions to these problems are intimately related. The Kalman filter is the solution to the last problem.</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><i>4.1.1<br />Weighted Least-Squares Solution</i></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">The WLS estimate <img src="f090754f50daa0e52ebe28b2762c1c4a.gif" border="0" alt="XCIRC.GIF" width="15" height="16" /> is found with differential calculus to minimize Eq. (4.1).</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">Before proceeding, it is useful to note the following matrix derivative formulas:</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><img src="0312bc7aeef2afa8b7f350c1f475d73c.gif" border="0" alt="0097-01.GIF" width="121" height="70" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">Multiplying out Eq. (4.1) result in</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><img src="b079bd06a1b2af8d4e4c69fd6a4db5f6.gif" border="0" alt="0097-02.GIF" width="275" height="34" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">Therefore the extreme points of the objective function are determined by the solution of</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><img src="8b312985aa15340d1921d98f33545d9c.gif" border="0" alt="0097-03.GIF" width="359" height="36" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">which yields</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><img src="f856653de4142be530a186161c7dd5d6.gif" border="0" alt="0097-04.GIF" width="314" height="19" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">The solution of Eq. (4.5) is a unique minimum when <img src="398ec188c97ed06ae035d0ff8a4bfc9f.gif" border="0" alt="C0097-01.GIF" width="161" height="19" /> is positive definite. This is true if W is positive definite and H has <i>n</i> linearly independent rows [i.e, rank(H) = <i>n</i>].</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">For analysis, define</font><font face="Times New Roman, Times, Serif" size="3" color="#FFFF00"></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><img src="63e41886f4627baa50811e2824d7af2b.gif" border="0" alt="0097-05.GIF" width="314" height="112" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table></td></tr></table><p><font size="0"></font></p>聽 </td> </tr> <tr> <td align="left" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_96.html">< previous page</a></td> <td id="ebook_next" align="center" width="40%" style="background: #EEF3E2"><strong style="color: #2F4F4F; font-size: 120%;">page_97</strong></td> <td align="right" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_98.html">next page ></a></td> </tr> </table> </body> </html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -