⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 page_218.html

📁 this book can help you to get a better performance in the gps development
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">	<html>		<head>			<title>page_218</title>			<link rel="stylesheet" href="reset.css" type="text/css" media="all">			<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />		</head>		<body>		<table summary="top nav" border="0" width="100%">			<tr>				<td align="left" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_217.html">&lt;&nbsp;previous page</a></td>				<td id="ebook_previous" align="center" width="40%" style="background: #EEF3E2"><strong style="color: #2F4F4F; font-size: 120%;">page_218</strong></td>				<td align="right" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_219.html">next page&nbsp;&gt;</a></td>			</tr>					<tr>				<td id="ebook_page" align="left" colspan="3" style="background: #ffffff; padding: 20px;">    <table border="0" width="100%" cellpadding="0"><tr><td align="center">  <table border="0" cellpadding="2" cellspacing="0" width="100%"><tr><td align="left"></td>  <td align="right"></td>  </tr></table></td></tr><tr><td align="left"><p></p><table border="0" cellspacing="0" cellpadding="0" width="100%"><tr><td align="right"><font face="Times New Roman, Times, Serif" size="2" color="#FF0000">Page 218</font></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3">where <img src="09d7339dd54a3b46e5ea4e62f30c3a08.gif" border="0" alt="C0218-01.GIF" width="118" height="22" /> accounts for error in the alignment process. Equations (6.101) and (6.129) are used to determine a linearized differential equation relating the various sources of gyro measurement error to the time derivative of the attitude error. In the following paragraphs the platform angular rate error vector <img src="c2048a28dd2ae12434738d4a0670b1c0.gif" border="0" alt="C0218-02.GIF" width="29" height="21" /> is denoted as <i>T</i>.</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3">The partial derivative of <i>T</i> with respect to gyro bias is</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3"><img src="27eb1b95a7a8d566095c836af185c106.gif" border="0" alt="0218-01.GIF" width="355" height="22" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3">Typically, </font><font face="Symbol" size="3">d</font><font face="Times New Roman, Times, Serif" size="3">b</font><font face="Times New Roman, Times, Serif" size="1"><sub><i>g</i></sub></font><font face="Times New Roman, Times, Serif" size="3"> is modeled as a random-walk process [i.e., <img src="bd97c1a48091e143370a57d7d4e740f7.gif" border="0" alt="C0218-03.GIF" width="55" height="22" /> with <img src="10c5e5000a208013aa4436c04af4f3a3.gif" border="0" alt="C0218-04.GIF" width="68" height="17" />]. More detailed models are considered in Refs. 118 and 153.</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3">Letting </font><font face="Symbol" size="3">d</font><font face="Times New Roman, Times, Serif" size="3">A</font><font face="Times New Roman, Times, Serif" size="1"><sub><i>g</i></sub></font><font face="Times New Roman, Times, Serif" size="3"> = (</font><font face="Symbol" size="3">d</font><font face="Times New Roman, Times, Serif" size="3">SF</font><font face="Times New Roman, Times, Serif" size="1"><sub><i>g</i></sub></font><font face="Times New Roman, Times, Serif" size="3"> - </font><font face="Symbol" size="3">d</font><font face="Times New Roman, Times, Serif" size="1"><sub><i>p</i>2<i>g</i></sub></font><font face="Times New Roman, Times, Serif" size="3">),</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3"><img src="c5462b0673e685eb3ea8fdda668d280e.gif" border="0" alt="0218-02.GIF" width="341" height="65" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3">Define the auxiliary state composed of the gyro scale factor and misalignment matrix parameters to be</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3"><img src="d856c5855fad7af776c12ecf2935a9b0.gif" border="0" alt="0218-03.GIF" width="385" height="20" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3">Then the partial derivative with respect to x</font><font face="Times New Roman, Times, Serif" size="1"><sub><i>Ag</i></sub></font><font face="Times New Roman, Times, Serif" size="3"> is</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3"><img src="376ff972f19cb5e0f5902ff996020a9b.gif" border="0" alt="0218-04.GIF" width="448" height="65" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3">where <img src="0ebb82f1dd0c00842fdea2865d9dabee.gif" border="0" alt="C0218-05.GIF" width="90" height="21" />. Typically, x</font><font face="Times New Roman, Times, Serif" size="1"><sub><i>Ag</i></sub></font><font face="Times New Roman, Times, Serif" size="3"> is modeled as a vector of random biases [i.e., <img src="c18be1524985156ca3e1b79883a8aee5.gif" border="0" alt="C0218-06.GIF" width="49" height="17" /> with <img src="2350acbae16ed443820d4cb672add1e0.gif" border="0" alt="C0218-07.GIF" width="70" height="18" />].</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3">Finally, when second-order sensitivity of the gyros to acceleration effects is considered, the g-sensitive error is modeled as</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3"><img src="2bb91cae9dfdbceb39ceeeb070a36057.gif" border="0" alt="0218-05.GIF" width="474" height="100" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3">When the auxiliary state is defined as</font><font face="Times New Roman, Times, Serif" size="3" color="#FFFF00"></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td>  <td colspan="3" height="12"></td>  <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td>  <td><font face="Times New Roman, Times, Serif" size="3"><img src="ea13393b02a6a80c0032a071f81698e8.gif" border="0" alt="0218-06.GIF" width="442" height="44" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table></td></tr></table><p><font size="0"></font></p>  </td>			</tr>				<tr>				<td align="left" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_217.html">&lt;&nbsp;previous page</a></td>				<td id="ebook_next" align="center" width="40%" style="background: #EEF3E2"><strong style="color: #2F4F4F; font-size: 120%;">page_218</strong></td>				<td align="right" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_219.html">next page&nbsp;&gt;</a></td>			</tr>		</table>		</body>	</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -