📄 page_47.html
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <title>page_47</title> <link rel="stylesheet" href="reset.css" type="text/css" media="all"> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> </head> <body> <table summary="top nav" border="0" width="100%"> <tr> <td align="left" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_46.html">< previous page</a></td> <td id="ebook_previous" align="center" width="40%" style="background: #EEF3E2"><strong style="color: #2F4F4F; font-size: 120%;">page_47</strong></td> <td align="right" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_48.html">next page ></a></td> </tr> <tr> <td id="ebook_page" align="left" colspan="3" style="background: #ffffff; padding: 20px;"> <table border="0" width="100%" cellpadding="0"><tr><td align="center"> <table border="0" cellpadding="2" cellspacing="0" width="100%"><tr><td align="left"></td> <td align="right"></td> </tr></table></td></tr><tr><td align="left"><p></p><table border="0" cellspacing="0" cellpadding="0" width="100%"><tr><td align="right"><font face="Times New Roman, Times, Serif" size="2" color="#FF0000">Page 47</font></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">in the (<i>x", y", z"</i>) coordinate systems of Fig. 2.10. Transforming this vector to the vehicle frame by [</font><font face="Symbol" size="3"><i>f</i></font><font face="Times New Roman, Times, Serif" size="3">]</font><font face="Times New Roman, Times, Serif" size="1"><sub>1</sub></font><font face="Times New Roman, Times, Serif" size="3"> [see Eq. (2.29)] produces</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><img src="ffcbc93c6d0d16c066f0736b38c6f09f.gif" border="0" alt="0047-01.GIF" width="314" height="63" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">for the <i>d</i></font><i><font face="Symbol" size="3">q</font><font face="Times New Roman, Times, Serif" size="3">/dt</font></i><font face="Times New Roman, Times, Serif" size="3"> rotation alone. Third, note that <i>d</i></font><i><font face="Symbol" size="3">y</font><font face="Times New Roman, Times, Serif" size="3">/dt</font></i><font face="Times New Roman, Times, Serif" size="3"> corresponds to the angular rate vector (<i>d</i></font><i><font face="Symbol" size="3">y</font><font face="Times New Roman, Times, Serif" size="3">/dt</font></i><font face="Times New Roman, Times, Serif" size="3">)K</font><font face="Symbol" size="3">垄</font><font face="Times New Roman, Times, Serif" size="3"> in the (<i>x</i></font><font face="Symbol" size="3">垄</font><font face="Times New Roman, Times, Serif" size="3"><i>, y</i></font><font face="Symbol" size="3">垄</font><font face="Times New Roman, Times, Serif" size="3"><i>, z</i></font><font face="Symbol" size="3">垄</font><font face="Times New Roman, Times, Serif" size="3">) coordinate systems of Fig. 2.9. Transforming this vector to the vehicle frame by [</font><font face="Symbol" size="3"><i>f</i></font><font face="Times New Roman, Times, Serif" size="3">]1[</font><font face="Symbol" size="3"><i>q</i></font><font face="Times New Roman, Times, Serif" size="3">]</font><font face="Times New Roman, Times, Serif" size="1"><sub>2</sub></font><font face="Times New Roman, Times, Serif" size="3"> produces</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><img src="6a7f6bbcc8155e2c438d39503c094a82.gif" border="0" alt="0047-02.GIF" width="330" height="63" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">for the <i>d</i></font><i><font face="Symbol" size="3">y</font><font face="Times New Roman, Times, Serif" size="3">/dt</font></i><font face="Times New Roman, Times, Serif" size="3"> rotation alone. Therefore the overall transformation when all the angles could change simultaneously is given by</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><img src="f8e78e9d6be5dd076d3f3dd030b6bded.gif" border="0" alt="0047-03.GIF" width="381" height="72" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">The inverse transformation is defined by inversion to be</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><img src="054d062c728db2a16dcc29ca92705949.gif" border="0" alt="0047-04.GIF" width="396" height="72" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">Equation (2.70) allows calculation of the Euler angle derivatives for integration. Note that the solution requires integration of three first-order nonlinear differential equations. This integration directly provides the Euler angles both for control purposes and for computation of the direction-cosine matrices. This approach requires numerous trigonometric operations at the high rate of the attitude portion of the INS.</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">2.5.3.3<br />Quaternion Derivatives</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">By using the properties of quaternions, it can be shown [41] that</font><font face="Times New Roman, Times, Serif" size="3" color="#FFFF00"></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><img src="c361ace211be27b81372b2e5d2ad5be4.gif" border="0" alt="0047-05.GIF" width="330" height="20" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3"><img src="af9afad0212b8bf948b6463bdb7e62c8.gif" border="0" alt="0047-06.GIF" width="332" height="71" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table></td></tr></table><p><font size="0"></font></p>聽 </td> </tr> <tr> <td align="left" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_46.html">< previous page</a></td> <td id="ebook_next" align="center" width="40%" style="background: #EEF3E2"><strong style="color: #2F4F4F; font-size: 120%;">page_47</strong></td> <td align="right" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_48.html">next page ></a></td> </tr> </table> </body> </html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -