📄 page_111.html
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <title>page_111</title> <link rel="stylesheet" href="reset.css" type="text/css" media="all"> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> </head> <body> <table summary="top nav" border="0" width="100%"> <tr> <td align="left" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_110.html">< previous page</a></td> <td id="ebook_previous" align="center" width="40%" style="background: #EEF3E2"><strong style="color: #2F4F4F; font-size: 120%;">page_111</strong></td> <td align="right" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_112.html">next page ></a></td> </tr> <tr> <td id="ebook_page" align="left" colspan="3" style="background: #ffffff; padding: 20px;"> <table border="0" width="100%" cellpadding="0"><tr><td align="center"> <table border="0" cellpadding="2" cellspacing="0" width="100%"><tr><td align="left"></td> <td align="right"></td> </tr></table></td></tr><tr><td align="left"><p></p><table border="0" cellspacing="0" cellpadding="0" width="100%"><tr><td align="right"><font face="Times New Roman, Times, Serif" size="2" color="#FF0000">Page 111</font></td></tr></table><table border="0" cellspacing="0" cellpadding="0" width="100%"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td align="center"><font face="Times New Roman, Times, Serif" size="3"><img src="a87629dcdb8af4a04e457eb84b876edd.gif" border="0" alt="0111-01.GIF" width="444" height="455" /></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0" width="100%"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td align="center"><font face="Times New Roman, Times, Serif" size="2">Figure聽4.4<br />Kalman聽filter聽performance聽on聽one-dimensional聽aided聽INS.</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"><img src="f7703d30723feae8ee39d997c6419c20.gif" border="0" width="24" height="1" alt="f7703d30723feae8ee39d997c6419c20.gif" /></td> <td colspan="3" height="12"></td> <td rowspan="5"><img src="f7703d30723feae8ee39d997c6419c20.gif" border="0" width="24" height="1" alt="f7703d30723feae8ee39d997c6419c20.gif" /></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="2">increasingly noisy estimates. In comparison with Fig. 3.11, each of the Kalman filter state error variance terms is smaller than the corresponding error variance terms of the pole-placement observer, as expected of the optimal design.</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"><img src="f7703d30723feae8ee39d997c6419c20.gif" border="0" width="24" height="1" alt="f7703d30723feae8ee39d997c6419c20.gif" /></td> <td colspan="3" height="12"></td> <td rowspan="5"><img src="f7703d30723feae8ee39d997c6419c20.gif" border="0" width="24" height="1" alt="f7703d30723feae8ee39d997c6419c20.gif" /></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="2">The steady-state Kalman filter gains are [2.286 脳 10<sup>-1</sup>, 2.959 脳 10<sup>-3</sup>, 5.090 脳 10<sup>-4</sup>], which correspond to closed-loop eigenvalues of 0.88 卤 <i>j</i>0.11 and 0.98. The first two gains and eigenvalues are near those of the pole-placement observer, while the Kalman filter approach uses a significantly smaller gain (slower eigenvalue) for the bias estimate. This is due to the smaller amount of bias driving noise relative to accelerometer and position-sensor measurement noise.</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="17"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">4.3<br />Kalman Filter: Properties</font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table><table border="0" cellspacing="0" cellpadding="0"><tr><td rowspan="5"></td> <td colspan="3" height="12"></td> <td rowspan="5"></td></tr><tr><td colspan="3"></td></tr><tr><td></td> <td><font face="Times New Roman, Times, Serif" size="3">In Secs. 4.1 and 4.2, the Kalman filter was derived as an extension of the least-squares approach from linear sets of algebraic equations to linear systems of</font><font face="Times New Roman, Times, Serif" size="3" color="#FFFF00"></font></td><td></td></tr><tr><td colspan="3"></td></tr><tr><td colspan="3" height="1"></td></tr></table></td></tr></table><p><font size="0"></font></p>聽 </td> </tr> <tr> <td align="left" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_110.html">< previous page</a></td> <td id="ebook_next" align="center" width="40%" style="background: #EEF3E2"><strong style="color: #2F4F4F; font-size: 120%;">page_111</strong></td> <td align="right" width="30%" style="background: #EEF3E2"><a style="color: blue; font-size: 120%; font-weight: bold; text-decoration: none; font-family: verdana;" href="page_112.html">next page ></a></td> </tr> </table> </body> </html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -