📄 km_demo.m
字号:
% Demo for the kmeans algorithm% First, generate sample data% We will test with 4 clusters in 3 dimensions,% by generating random data with gaussian density, variance 1,% with means (0,0,0), (0,0,6), (0,6,0) and (6,0,0)% and Ndata 200, 300, 100 and 500K = 4;dim = 3;variance = 1;sdev = sqrt(variance);cluster1 = sdev*randn(200,dim) + kron(ones(200,1),[0,0,0]);cluster2 = sdev*randn(300,dim) + kron(ones(300,1),[0,0,6]);cluster3 = sdev*randn(100,dim) + kron(ones(100,1),[0,6,0]);cluster4 = sdev*randn(500,dim) + kron(ones(500,1),[6,0,0]);% Build data matrixX = [cluster1 ; cluster2 ; cluster3; cluster4];% Now apply K-means algorithm% Note that order of results may varymaxerr = 0;[proto Nproto] = simple_kmeans(X,K,maxerr)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -