⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 util.py

📁 CVXMOD is a Python-based tool for expressing and solving convex optimization problems.
💻 PY
字号:
"""General utility functions that don't belong in cvxmod.base."""# Copyright (C) 2006-2008 Jacob Mattingley and Stephen Boyd.## Portions of this file were contributed by Timothy Hunter.## This file is part of CVXMOD.## CVXMOD is free software; you can redistribute it and/or modify it under the# terms of the GNU General Public License as published by the Free Software# Foundation; either version 3 of the License, or (at your option) any later# version.## CVXMOD is distributed in the hope that it will be useful, but WITHOUT ANY# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR# A PARTICULAR PURPOSE. See the GNU General Public License for more details.## You should have received a copy of the GNU General Public License along with# this program. If not, see <http://www.gnu.org/licenses/>.import cvxmodfrom cvxmod.base import *import cvxoptfrom cvxopt import lapackfrom cvxopt import cholmodfrom math import sqrt__all__ = ["randn", "rand", "randseed", "linspace", "joinlist", "iterable",           "bylowerstr", "slicetoindices", "sqrtm", "svd", "eig",           "leastsquares", "leastnorm", "cholsolve", "spy", "cholnum"]def randn(rows=1, cols=None, mean=0, std=1):    if iterable(rows):        if len(rows) == 2:            cols = rows[1]            rows = rows[0]        else:            raise TypeError('invalid dimension tuple')    if cols is None:        cols = rows    if equiv((rows, cols), (1, 1)):        return float(cvxopt.base.normal(1, 1, mean=mean, std=std)[0])    else:        return cvxopt.base.normal(rows, cols, mean, std)def rand(rows=1, cols=None, lowerlim=0, upperlim=1):    if iterable(rows):        if len(rows) == 2:            cols = rows[1]            rows = rows[0]        else:            raise TypeError('invalid dimension tuple')    if cols is None:        cols = rows    if equiv((rows, cols), (1, 1)):        return float(cvxopt.base.uniform(1, 1, lowerlim, upperlim)[0])    else:        return cvxopt.base.uniform(rows, cols, lowerlim, upperlim)def linspace(start, end, N, incstop=True):    x = zeros(N, 1, full=True)    if incstop:        step = (end - start) / (N - 1)    else:        step = (end - start) / N    x[0] = start    for i in range(1, N):        x[i] = x[i-1] + step    return xdef randseed(s=None):    if s is None:        cvxopt.base.setseed()    else:        cvxopt.base.setseed(s)def joinlist(l, skipand=False):    if not l:        return ''    elif len(l) == 1:        return str(l[0])    elif skipand:        return ', '.join([str(x) for x in l])    else:        s = ''        for x in l[:-2]:            s += str(x) + ', '        s += str(l[-2]) + ' and ' + str(l[-1])        return sdef iterable(obj):    """Returns True if obj is iterable, i.e., if obj is a sequence."""    if isinstance(obj, (matrix, spmatrix)):        return False    try:        len(obj)        return True    except TypeError:        return Falsedef bylowerstr(l):    return sorted(l, lambda x, y: cmp(str(x).lower(), str(y).lower()))def slicetoindices(s, l):    # takes a slice, a list or a constant, and returns a list of indices.    # l is the length of the relevant object into which we are indexing.    l = value(l)    if isinstance(s, slice):        # syntax is {range|slice}(start, stop, step).        start = value(s.start)        stop = value(s.stop)        step = value(s.step)        if start is None:            start = 0        if stop is None:            stop = l        if step is None:            step = 1        if stop < 0:            stop = l + stop        return range(start, stop, step)    elif iterable(s):        return [value(x) for x in s]        else:        return [value(s)]def sqrtm(A):    """Returns the matrix square root of a positive semidefinite matrix."""    if not isinstance(A, (matrix, spmatrix)) or rows(A) != cols(A) or eig(A)[0][0] < 0:        raise TypeError('a symmetric positive semidefinite matrix is required')    V = matrix(A)    z = zeros(rows(A), 1, full=True)    lapack.syev(V, z, jobz='V')    # Round eigenvalues to deal with numerical instability.    # Note: don't use cvxmod atoms pos or sqrt here: overkill.    for i in range(len(z)):        if z[i] <= 0:            z[i] = 0        else:            z[i] = sqrt(z[i])    return V*diag(z)*tp(V)def leastsquares(A, B):    """Finds the least-squares approximate solution X, which minimizes ||AX -    B||_fro.        A must be full rank."""    if not (isinstance(A, (matrix, spmatrix)) and isinstance(B, (matrix, spmatrix))):        raise TypeError('both arguments must be matrices')    if rows(A) < cols(A):        raise DimError('A must be skinny')    if rows(B) != rows(A):        raise DimError('rows(B) must equal rows(A)')    X = matrix(B)    lapack.gels(matrix(A), X)    return Xdef leastnorm(A, B):    """Finds the least-norm X which minimizes ||X||_fro while satisfying    AX == B.        A must be full rank."""    if not (isinstance(A, (matrix, spmatrix)) and isinstance(B, (matrix, spmatrix))):        raise TypeError('both arguments must be matrices')    if rows(A) > cols(A):        raise DimError('A must be fat')    if rows(B) != rows(A):        raise DimError('rows(B) must equal rows(A)')    # Pad X to make room for the solution.    X = concatvert(B, zeros(cols(A) - rows(B), cols(B), full=True))    lapack.gels(matrix(A), X)    return Xdef eig(A):    """Calculates the eigenvalues and eigenvectors of a real symmetric matrix.    Returns (eigenvalues, eigenvectors), where the eigenvalues are sorted in    increasing order."""    if not isinstance(A, (matrix, spmatrix)):        raise TypeError('a symmetric matrix is required')    eigenvalues = zeros(rows(A), 1, full=True)    eigenvectors = matrix(A)    lapack.syevr(matrix(A), eigenvalues, jobz='V', Z=eigenvectors)    return (eigenvalues, eigenvectors)def svd(A):    """Computes the singular value decomposition of a matrix.        Returns (U, S, V) where the columns of U are the (truncated) left singular    vectors, S contains the singular values in decreasing order, and the    columns of V are the truncated right singular values. If (U, S, V) =    svd(A) then A == U*diag(S)*transpose(V)."""    m, n = size(A)    k = min(m, n)    S = zeros(k, 1, full=True)    U = zeros(m, full=True)    V = zeros(n, full=True)    lapack.gesdd(matrix(A), S, jobz='A', U=U, Vt=V)    return (U[:,0:k], S, tp(V[0:k,:]))def cholsolve(A, B):    B = matrix(B)    cholmod.linsolve(A, B)    return Bdef spy(L):    import pylab    if isinstance(L, (matrix, spmatrix)):        pylab.spy(matrix(L))        return    n = 0    for (i, j) in L.keys():        if i > n:            n = i        if j > n:            n = j    A = zeros(n+1)    for (i, j) in L.keys():        if isnonzero(L[i,j]):            A[i,j] = 1.0    pylab.spy(matrix(A))def cholnum(A):    # jem: retired code which will be removed soon. Used for testing code    # generation of cholesky.    n = rows(A)    # Cholesky in Python.    v = [None,]*n    d = [None,]*n    L = zeros(n)    d[0] = A[0,0]    for i in range(1, n):        if isnonzero(A[i,0]):            L[i,0] = A[i,0] / d[0]    for j in range(1, n):        for i in range(j):            if iszero(L[j,i]) or iszero(d[i]):                v[i] = 0            else:                v[i] = L[j,i]*d[i]        v[j] = A[j,j]        for i in range(j):            if isnonzero(L[j,i]*v[i]):                v[j] -= L[j,i]*v[i]        d[j] = v[j]        if j < n - 1:            for i in range(j + 1, n):                if iszero(A[i,j]):                    L[i,j] = 0                else:                    L[i,j] = A[i,j]                for k in range(j):                    if isnonzero(L[i,k]*v[k]):                        L[i,j] -= L[i,k]*v[k]                if isnonzero(L[i,j]):                    L[i,j] /= v[j]    # Could replace this later by knowledge that these are identically 1.    # Need some special token to add here, perhaps?    for i in range(n):        L[i,i] = 1    return (sparse(L), matrix(d))

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -