📄 util.py
字号:
"""General utility functions that don't belong in cvxmod.base."""# Copyright (C) 2006-2008 Jacob Mattingley and Stephen Boyd.## Portions of this file were contributed by Timothy Hunter.## This file is part of CVXMOD.## CVXMOD is free software; you can redistribute it and/or modify it under the# terms of the GNU General Public License as published by the Free Software# Foundation; either version 3 of the License, or (at your option) any later# version.## CVXMOD is distributed in the hope that it will be useful, but WITHOUT ANY# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR# A PARTICULAR PURPOSE. See the GNU General Public License for more details.## You should have received a copy of the GNU General Public License along with# this program. If not, see <http://www.gnu.org/licenses/>.import cvxmodfrom cvxmod.base import *import cvxoptfrom cvxopt import lapackfrom cvxopt import cholmodfrom math import sqrt__all__ = ["randn", "rand", "randseed", "linspace", "joinlist", "iterable", "bylowerstr", "slicetoindices", "sqrtm", "svd", "eig", "leastsquares", "leastnorm", "cholsolve", "spy", "cholnum"]def randn(rows=1, cols=None, mean=0, std=1): if iterable(rows): if len(rows) == 2: cols = rows[1] rows = rows[0] else: raise TypeError('invalid dimension tuple') if cols is None: cols = rows if equiv((rows, cols), (1, 1)): return float(cvxopt.base.normal(1, 1, mean=mean, std=std)[0]) else: return cvxopt.base.normal(rows, cols, mean, std)def rand(rows=1, cols=None, lowerlim=0, upperlim=1): if iterable(rows): if len(rows) == 2: cols = rows[1] rows = rows[0] else: raise TypeError('invalid dimension tuple') if cols is None: cols = rows if equiv((rows, cols), (1, 1)): return float(cvxopt.base.uniform(1, 1, lowerlim, upperlim)[0]) else: return cvxopt.base.uniform(rows, cols, lowerlim, upperlim)def linspace(start, end, N, incstop=True): x = zeros(N, 1, full=True) if incstop: step = (end - start) / (N - 1) else: step = (end - start) / N x[0] = start for i in range(1, N): x[i] = x[i-1] + step return xdef randseed(s=None): if s is None: cvxopt.base.setseed() else: cvxopt.base.setseed(s)def joinlist(l, skipand=False): if not l: return '' elif len(l) == 1: return str(l[0]) elif skipand: return ', '.join([str(x) for x in l]) else: s = '' for x in l[:-2]: s += str(x) + ', ' s += str(l[-2]) + ' and ' + str(l[-1]) return sdef iterable(obj): """Returns True if obj is iterable, i.e., if obj is a sequence.""" if isinstance(obj, (matrix, spmatrix)): return False try: len(obj) return True except TypeError: return Falsedef bylowerstr(l): return sorted(l, lambda x, y: cmp(str(x).lower(), str(y).lower()))def slicetoindices(s, l): # takes a slice, a list or a constant, and returns a list of indices. # l is the length of the relevant object into which we are indexing. l = value(l) if isinstance(s, slice): # syntax is {range|slice}(start, stop, step). start = value(s.start) stop = value(s.stop) step = value(s.step) if start is None: start = 0 if stop is None: stop = l if step is None: step = 1 if stop < 0: stop = l + stop return range(start, stop, step) elif iterable(s): return [value(x) for x in s] else: return [value(s)]def sqrtm(A): """Returns the matrix square root of a positive semidefinite matrix.""" if not isinstance(A, (matrix, spmatrix)) or rows(A) != cols(A) or eig(A)[0][0] < 0: raise TypeError('a symmetric positive semidefinite matrix is required') V = matrix(A) z = zeros(rows(A), 1, full=True) lapack.syev(V, z, jobz='V') # Round eigenvalues to deal with numerical instability. # Note: don't use cvxmod atoms pos or sqrt here: overkill. for i in range(len(z)): if z[i] <= 0: z[i] = 0 else: z[i] = sqrt(z[i]) return V*diag(z)*tp(V)def leastsquares(A, B): """Finds the least-squares approximate solution X, which minimizes ||AX - B||_fro. A must be full rank.""" if not (isinstance(A, (matrix, spmatrix)) and isinstance(B, (matrix, spmatrix))): raise TypeError('both arguments must be matrices') if rows(A) < cols(A): raise DimError('A must be skinny') if rows(B) != rows(A): raise DimError('rows(B) must equal rows(A)') X = matrix(B) lapack.gels(matrix(A), X) return Xdef leastnorm(A, B): """Finds the least-norm X which minimizes ||X||_fro while satisfying AX == B. A must be full rank.""" if not (isinstance(A, (matrix, spmatrix)) and isinstance(B, (matrix, spmatrix))): raise TypeError('both arguments must be matrices') if rows(A) > cols(A): raise DimError('A must be fat') if rows(B) != rows(A): raise DimError('rows(B) must equal rows(A)') # Pad X to make room for the solution. X = concatvert(B, zeros(cols(A) - rows(B), cols(B), full=True)) lapack.gels(matrix(A), X) return Xdef eig(A): """Calculates the eigenvalues and eigenvectors of a real symmetric matrix. Returns (eigenvalues, eigenvectors), where the eigenvalues are sorted in increasing order.""" if not isinstance(A, (matrix, spmatrix)): raise TypeError('a symmetric matrix is required') eigenvalues = zeros(rows(A), 1, full=True) eigenvectors = matrix(A) lapack.syevr(matrix(A), eigenvalues, jobz='V', Z=eigenvectors) return (eigenvalues, eigenvectors)def svd(A): """Computes the singular value decomposition of a matrix. Returns (U, S, V) where the columns of U are the (truncated) left singular vectors, S contains the singular values in decreasing order, and the columns of V are the truncated right singular values. If (U, S, V) = svd(A) then A == U*diag(S)*transpose(V).""" m, n = size(A) k = min(m, n) S = zeros(k, 1, full=True) U = zeros(m, full=True) V = zeros(n, full=True) lapack.gesdd(matrix(A), S, jobz='A', U=U, Vt=V) return (U[:,0:k], S, tp(V[0:k,:]))def cholsolve(A, B): B = matrix(B) cholmod.linsolve(A, B) return Bdef spy(L): import pylab if isinstance(L, (matrix, spmatrix)): pylab.spy(matrix(L)) return n = 0 for (i, j) in L.keys(): if i > n: n = i if j > n: n = j A = zeros(n+1) for (i, j) in L.keys(): if isnonzero(L[i,j]): A[i,j] = 1.0 pylab.spy(matrix(A))def cholnum(A): # jem: retired code which will be removed soon. Used for testing code # generation of cholesky. n = rows(A) # Cholesky in Python. v = [None,]*n d = [None,]*n L = zeros(n) d[0] = A[0,0] for i in range(1, n): if isnonzero(A[i,0]): L[i,0] = A[i,0] / d[0] for j in range(1, n): for i in range(j): if iszero(L[j,i]) or iszero(d[i]): v[i] = 0 else: v[i] = L[j,i]*d[i] v[j] = A[j,j] for i in range(j): if isnonzero(L[j,i]*v[i]): v[j] -= L[j,i]*v[i] d[j] = v[j] if j < n - 1: for i in range(j + 1, n): if iszero(A[i,j]): L[i,j] = 0 else: L[i,j] = A[i,j] for k in range(j): if isnonzero(L[i,k]*v[k]): L[i,j] -= L[i,k]*v[k] if isnonzero(L[i,j]): L[i,j] /= v[j] # Could replace this later by knowledge that these are identically 1. # Need some special token to add here, perhaps? for i in range(n): L[i,i] = 1 return (sparse(L), matrix(d))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -