⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 huber.py

📁 CVXMOD is a Python-based tool for expressing and solving convex optimization problems.
💻 PY
字号:
"""Convex optimization modeling for cvxopt."""# Copyright (C) 2006-2008 Jacob Mattingley and Stephen Boyd.## This file is part of CVXMOD.## CVXMOD is free software; you can redistribute it and/or modify it under the# terms of the GNU General Public License as published by the Free Software# Foundation; either version 3 of the License, or (at your option) any later# version.## CVXMOD is distributed in the hope that it will be useful, but WITHOUT ANY# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR# A PARTICULAR PURPOSE. See the GNU General Public License for more details.## You should have received a copy of the GNU General Public License along with# this program. If not, see <http://www.gnu.org/licenses/>.from base import *# user importsimport cvxopt.basedef eval(*args):    x = args[0]    if len(args) == 2:        M = args[1]    else:        M = 1    x = matrix(x, tc='d')    out = matrix(zeros(size(x)), tc='d')    for i in range(len(x)):        if abs(x[i]) <= M:            out[i] = x[i]**2        else:            out[i] = 2*M*abs(x[i]) - M**2    return outclass functionalform(function, multiarg, elementwise, convex, positive):    """Understands huber(x, M)."""    def __init__(self, *args):        x = args[0]        if len(args) == 2:            M = args[1]        else:            M = 1        self.x = x        self.M = M        self.rows = rows(x)        self.cols = cols(x)        self.args = args # jem to make display function work.    def _getincfn(self):        return ispos(self.x)    incfn = property(_getincfn)    def _getdecfn(self):        return isneg(self.x)    decfn = property(_getdecfn)    def _getvalue(self):        return eval(value(self.x), value(self.M))    value = property(_getvalue)class stdformhuber(object):    # inherit from something, later? jem. include NotImplementedError errors and a    # test() function or so.    """An F() standard form for huber(x) - t <= 0."""    def __init__(self, x, M, t):        self.rows = rows(x)        self.cols = cols(x)        self.optvars = set((x, t))        self.x = x        if value(M <= 0): # jem. move this test.            raise OptimizationError('M must be positive for huber')        else:            self.M = M        self.t = t        def indomain(self):        return True    def setindomain(self):        self.x.value = 0.05*value(self.M)*ones(size(self.x))        self.t.value = ones(size(self.t))    def value(self):        return eval(value(self.x), value(self.M)) - value(self.t)    def jacobian(self, var):        # not *quite* the jacobian, but nearly.        if var is self.x:            M = value(self.M)            x = matrix(value(self.x), tc='d')            out = matrix(zeros(size(x)), tc='d')            for i in range(len(x)):                if x[i] < -M:                    out[i] = -2*M                elif x[i] > M:                    out[i] = 2*M                else:                    out[i] = 2*x[i]            return diag(out)        elif var is self.t:            return -eye(rows(self.t))        else:            raise OptimizationError('illegal jacobian')    def hessianz(self, firstvar, secondvar, z):        if firstvar is secondvar is self.x:            M = value(self.M)            x = matrix(value(self.x), tc='d')            out = matrix(zeros(size(x)), tc='d')            for i in range(len(x)):                if abs(x[i]) <= M:                    out[i] = 2 # otherwise leave at 0.            return diag(diag(out)*z)        elif firstvar is secondvar is self.t:            return zeros(rows(self.t))        elif firstvar is self.x and secondvar is self.t:            return zeros(rows(self.x), rows(self.t))        elif firstvar is self.t and secondvar is self.x:            return zeros(rows(self.t), rows(self.x))        else:            raise OptimizationError('illegal hessian')def stdhuber(c):    vs = set(getoptvars(c))    if len(vs) != 2:        raise StdFormError    # try and detect huber(x, M) - t.    if isoptvar(-c.rhs):        vs.remove(-c.rhs)        a = c.lhs        if a.x is vs.pop() and a.func.functionalform is functionalform:            return (stdformhuber(a.x, a.M, -c.rhs), [])    # try and detect -t + huber(x, M).    if isoptvar(-c.lhs):        vs.remove(-c.lhs)        a = c.rhs        if a.x is vs.pop() and a.func.functionalform is functionalform:            return (stdformhuber(a.x, a.M, -c.lhs), [])def checkargs(args):    if len(args) < 1 or len(args) > 2:        raise AtomArgsError('incorrect number of arguments')    elif len(args) == 2 and getoptvars(args[1]):        raise AtomArgsError('M must not contain an optvar')    elif len(args) == 2 and not is1x1(args[1]):        raise AtomArgsError('M must be a 1x1 scalar')applystdform = stdhuber

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -