⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 logdet.py

📁 CVXMOD is a Python-based tool for expressing and solving convex optimization problems.
💻 PY
字号:
"""Convex optimization modeling for cvxopt."""# Copyright (C) 2006-2008 Jacob Mattingley and Stephen Boyd.## This file is part of CVXMOD.## CVXMOD is free software; you can redistribute it and/or modify it under the# terms of the GNU General Public License as published by the Free Software# Foundation; either version 3 of the License, or (at your option) any later# version.## CVXMOD is distributed in the hope that it will be useful, but WITHOUT ANY# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR# A PARTICULAR PURPOSE. See the GNU General Public License for more details.## You should have received a copy of the GNU General Public License along with# this program. If not, see <http://www.gnu.org/licenses/>.from base import *# user importsimport cvxopt.basefrom cvxopt import cholmoddef eval(obj):    try:        s = cholmod.options['supernodal']    except KeyError:        s = 2 # set to default.    cholmod.options['supernodal'] = 0    A = cvxopt.base.sparse(obj)    F = cholmod.symbolic(A)    cholmod.numeric(A, F)    Di = matrix(1.0, (4,1))    cholmod.solve(F, Di, sys=6)    # Reset state.    cholmod.options['supernodal'] = s    return -sum(cvxopt.base.log(Di))class functionalform(function, concave):    """Understands logdet(X)."""    def __init__(self, arg):        self.arg = arg        self.rows = 1        self.cols = 1class _stdform1(object):    # inherit from something, later? jem. include NotImplementedError errors and a    # test() function or so.    """An F() standard form for -logdet(X) + t <= 0."""    def __init__(self, X, t):        # jem some nasty hardcoding here.        self.rows = 1        self.cols = 1        self.optvars = set((X, t))        self.X = X        self.t = t    def indomain(self):        if value(self.X |gt| 0): # jem. this *must* be a variable.            return True        else:            return False    def setindomain(self):        self.X.value = 2*eye(rows(self.X))        self.t.value = -1    def getdomain(self):        return [self.X |gt| 0]    def value(self):        return -eval(value(self.X)) + value(self.t)    def jacobian(self, var):        # not *quite* the jacobian, but nearly.        if var is self.X:            return -value(self.X)**-1        elif var is self.t:            return eye(1)        else:            raise OptimizationError('illegal jacobian')    def hessianz(self, firstvar, secondvar, z):        X = value(self.X)        t = value(self.t)        if firstvar is secondvar is self.X:            Xinv = value(self.X)**-1            x = vec(Xinv)            return -z*x*transpose(x)        elif firstvar is secondvar is self.t:            return zeros(rows(t))        elif firstvar is self.X and secondvar is self.t:            return zeros(rows(X)*cols(X), rows(t))        elif firstvar is self.t and secondvar is self.X:            return zeros(rows(t), rows(X)*cols(X))        else:            raise OptimizationError('illegal hessian')applystdform = stdconcave(functionalform, _stdform1)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -