⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 power.py

📁 CVXMOD is a Python-based tool for expressing and solving convex optimization problems.
💻 PY
字号:
"""Convex optimization modeling for cvxopt."""# Copyright (C) 2006-2008 Jacob Mattingley and Stephen Boyd.## This file is part of CVXMOD.## CVXMOD is free software; you can redistribute it and/or modify it under the# terms of the GNU General Public License as published by the Free Software# Foundation; either version 3 of the License, or (at your option) any later# version.## CVXMOD is distributed in the hope that it will be useful, but WITHOUT ANY# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR# A PARTICULAR PURPOSE. See the GNU General Public License for more details.## You should have received a copy of the GNU General Public License along with# this program. If not, see <http://www.gnu.org/licenses/>.from base import *# user importsimport cvxopt.blasdef iseven(obj):    return isinstance(obj, int) and (obj % 2 == 0)def eval(*args):    return args[0]**args[1]class functionalform(function, multiarg, elementwise, convex):    """Understands power(x, p)."""    def __init__(self, *args):        arg = args[0]        p = args[1]        self.arg = arg        self.p = p # p must be positive, ensured by checkargs.        self.rows = rows(arg)        self.cols = cols(arg)        self.args = args # jem to make display function work.    def _getincfn(self):        if isinstance(self.p, (int, float)) and self.p <= 1:            return ispos(self.arg)        else:            return ispos(self.arg)    incfn = property(_getincfn)    def _getdecfn(self):        return isneg(self.arg) and iseven(self.p)    decfn = property(_getdecfn)    def _getconvfn(self):        if isinstance(self.p, (int, float)) and self.p >= 1 and ispos(self.arg):            return True        else:            return iseven(self.p)    convfn = property(_getconvfn)    def _getconcfn(self):        return isinstance(self.p, (int, float)) and self.p <= 1 and \                ispos(self.arg)    concfn = property(_getconcfn)    def _getposfn(self):        return iseven(self.p) or ispos(self.arg)    posfn = property(_getposfn)    def _getvalue(self):        return eval(value(self.arg), value(self.p))    value = property(_getvalue)class _stdformpowerconvex(object):    # inherit from something, later? jem. include NotImplementedError errors and a    # test() function or so.    """An F() standard form for power(x, p) - t <= 0."""    def __init__(self, x, p, t):        self.rows = rows(x)        self.cols = cols(x)        self.optvars = set((x, t))        self.x = x        if value(p <= 0): # jem. move this test.            raise OptimizationError('p must be positive for powers')        else:            self.p = p        self.t = t        def indomain(self):        return True    def setindomain(self):        self.x.value = ones(size(self.x))        self.t.value = ones(size(self.t))    def value(self):        return eval(value(self.x), value(self.p)) - value(self.t)    def jacobian(self, var):        # not *quite* the jacobian, but nearly.        if var is self.x:            p = value(self.p)            x = matrix(value(self.x), tc='d')            return p*diag(x**(p-1))        elif var is self.t:            return -eye(rows(self.t))        else:            raise OptimizationError('illegal jacobian')    def hessianz(self, firstvar, secondvar, z):        if firstvar is secondvar is self.x:            p = value(self.p)            x = matrix(value(self.x), tc='d')            return p*(p-1)*diag(x**(p-2))        elif firstvar is secondvar is self.t:            return zeros(rows(self.t))        elif firstvar is self.x and secondvar is self.t:            return zeros(rows(self.x), rows(self.t))        elif firstvar is self.t and secondvar is self.x:            return zeros(rows(self.t), rows(self.x))        else:            raise OptimizationError('illegal hessian')class _stdformpowerconcave(object):    # inherit from something, later? jem. include NotImplementedError errors and a    # test() function or so.    """An F() standard form for -power(x, p) + t <= 0."""    def __init__(self, x, p, t):        self.rows = rows(x)        self.cols = cols(x)        self.optvars = set((x, t))        self.x = x        if value(p <= 0): # jem. move this test.            raise OptimizationError('p must be positive for powers')        else:            self.p = p        self.t = t        def indomain(self):        return True    def setindomain(self):        self.x.value = ones(size(self.x))        self.t.value = ones(size(self.t))    def value(self):        return -eval(value(self.x), value(self.p)) + value(self.t)    def jacobian(self, var):        # not *quite* the jacobian, but nearly.        if var is self.x:            p = value(self.p)            x = matrix(value(self.x), tc='d')            return -p*diag(x**(p-1))        elif var is self.t:            return eye(rows(self.t))        else:            raise OptimizationError('illegal jacobian')    def hessianz(self, firstvar, secondvar, z):        if firstvar is secondvar is self.x:            p = value(self.p)            x = matrix(value(self.x), tc='d')            return -p*(p-1)*diag(x**(p-2))        elif firstvar is secondvar is self.t:            return zeros(rows(self.t))        elif firstvar is self.x and secondvar is self.t:            return zeros(rows(self.x), rows(self.t))        elif firstvar is self.t and secondvar is self.x:            return zeros(rows(self.t), rows(self.x))        else:            raise OptimizationError('illegal hessian')def stdpower(c):    vs = set(getoptvars(c))    if len(vs) != 2:        raise StdFormError    # try and detect power(x, p) - t.    if isoptvar(-c.rhs):        vs.remove(-c.rhs)        a = c.lhs        if a.arg is vs.pop() and a.func.functionalform is functionalform:            if isconvex(a):                return (_stdformpowerconvex(a.arg, a.p, -c.rhs), [])            else:                raise StdFormError    # try and detect -t + power(x, p).    if isoptvar(-c.lhs):        vs.remove(-c.lhs)        a = c.rhs        if a.arg is vs.pop() and a.func.functionalform is functionalform:            if isconvex(a):                return (_stdformpowerconvex(a.arg, a.p, -c.lhs), [])            else:                raise StdFormError    # try and detect -power(x, p) + t.    if isoptvar(c.rhs):        vs.remove(c.rhs)        a = -c.lhs        if a.arg is vs.pop() and a.func.functionalform is functionalform:            if isconcave(a):                return (_stdformpowerconcave(a.arg, a.p, c.rhs), [])            else:                raise StdFormError    # try and detect t - power(x, p).    if isoptvar(c.lhs):        vs.remove(c.lhs)        a = -c.rhs        if a.arg is vs.pop() and a.func.functionalform is functionalform:            if isconcave(a):                return (_stdformpowerconcave(a.arg, a.p, c.lhs), [])            else:                raise StdFormErrordef checkargs(args):    if len(args) != 2:        raise AtomArgsError('incorrect number of arguments')    elif getoptvars(args[1]):        raise AtomArgsError('p must not contain a variable')    elif not is1x1(args[1]):        raise AtomArgsError('p must be a 1x1 scalar')    elif getoptvars(args[0]) and isneg(args[1]):        # (allow negative powers of matrices.)        raise NotImplementedError('p must not be negative')def earlyexit(args):    if args[1] is 1 or args[1] is 1.0:        return args[0]applystdform = stdpower

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -