📄 ccm_unred.pro
字号:
pro ccm_UNRED, wave, flux, ebv, funred, R_V = r_v;+; NAME:; CCM_UNRED; PURPOSE:; Deredden a flux vector using the CCM 1989 parameterization ; EXPLANATION:; The reddening curve is that of Cardelli, Clayton, and Mathis (1989 ApJ.; 345, 245), including the update for the near-UV given by O'Donnell ; (1994, ApJ, 422, 158). Parameterization is valid from the IR to the ; far-UV (3.5 microns to 0.1 microns). ;; Users might wish to consider using the alternate procedure FM_UNRED; which uses the extinction curve of Fitzpatrick (1999).; CALLING SEQUENCE:; CCM_UNRED, wave, flux, ebv, funred, [ R_V = ] ; or ; CCM_UNRED, wave, flux, ebv, [ R_V = ] ; INPUT:; WAVE - wavelength vector (Angstroms); FLUX - calibrated flux vector, same number of elements as WAVE; If only 3 parameters are supplied, then this vector will; updated on output to contain the dereddened flux.; EBV - color excess E(B-V), scalar. If a negative EBV is supplied,; then fluxes will be reddened rather than deredenned.;; OUTPUT:; FUNRED - unreddened flux vector, same units and number of elements; as FLUX;; OPTIONAL INPUT KEYWORD; R_V - scalar specifying the ratio of total selective extinction; R(V) = A(V) / E(B - V). If not specified, then R_V = 3.1; Extreme values of R(V) range from 2.75 to 5.3;; EXAMPLE:; Determine how a flat spectrum (in wavelength) between 1200 A and 3200 A; is altered by a reddening of E(B-V) = 0.1. Assume an "average"; reddening for the diffuse interstellar medium (R(V) = 3.1);; IDL> w = 1200 + findgen(40)*50 ;Create a wavelength vector; IDL> f = w*0 + 1 ;Create a "flat" flux vector; IDL> ccm_unred, w, f, -0.1, fnew ;Redden (negative E(B-V)) flux vector; IDL> plot,w,fnew ;; NOTES:; (1) The CCM curve shows good agreement with the Savage & Mathis (1979); ultraviolet curve shortward of 1400 A, but is probably; preferable between 1200 and 1400 A.; (2) Many sightlines with peculiar ultraviolet interstellar extinction ; can be represented with a CCM curve, if the proper value of ; R(V) is supplied.; (3) Curve is extrapolated between 912 and 1000 A as suggested by; Longo et al. (1989, ApJ, 339,474); (4) Use the 4 parameter calling sequence if you wish to save the ; original flux vector.; (5) Valencic et al. (2004, ApJ, 616, 912) revise the ultraviolet CCM; curve (3.3 -- 8.0 um-1). But since their revised curve does; not connect smoothly with longer and shorter wavelengths, it is; not included here.;; REVISION HISTORY:; Written W. Landsman Hughes/STX January, 1992; Extrapolate curve for wavelengths between 900 and 1000 A Dec. 1993; Use updated coefficients for near-UV from O'Donnell Feb 1994; Allow 3 parameter calling sequence April 1998; Converted to IDLV5.0 April 1998;- On_error, 2 if N_params() LT 3 then begin print,'Syntax: CCM_UNRED, wave, flux, ebv, funred,[ R_V = ]' return endif if not keyword_set(R_V) then R_V = 3.1 x = 10000./ wave ; Convert to inverse microns npts = N_elements( x ) a = fltarr(npts) b = fltarr(npts);****************************** good = where( (x GT 0.3) and (x LT 1.1), Ngood ) ;Infrared if Ngood GT 0 then begin a[good] = 0.574 * x[good]^(1.61) b[good] = -0.527 * x[good]^(1.61) endif;****************************** good = where( (x GE 1.1) and (x LT 3.3) ,Ngood) ;Optical/NIR if Ngood GT 0 then begin ;Use new constants from O'Donnell (1994) y = x[good] - 1.82; c1 = [ 1. , 0.17699, -0.50447, -0.02427, 0.72085, $ ;Original; 0.01979, -0.77530, 0.32999 ] ;coefficients; c2 = [ 0., 1.41338, 2.28305, 1.07233, -5.38434, $ ;from CCM89; -0.62251, 5.30260, -2.09002 ] c1 = [ 1. , 0.104, -0.609, 0.701, 1.137, $ ;New coefficients -1.718, -0.827, 1.647, -0.505 ] ;from O'Donnell c2 = [ 0., 1.952, 2.908, -3.989, -7.985, $ ;(1994) 11.102, 5.491, -10.805, 3.347 ] a[good] = poly( y, c1) b[good] = poly( y, c2) endif;****************************** good = where( (x GE 3.3) and (x LT 8) ,Ngood) ;Mid-UV if Ngood GT 0 then begin y = x[good] F_a = fltarr(Ngood) & F_b = fltarr(Ngood) good1 = where( (y GT 5.9), Ngood1 ) if Ngood1 GT 0 then begin y1 = y[good1] - 5.9 F_a[ good1] = -0.04473 * y1^2 - 0.009779 * y1^3 F_b[ good1] = 0.2130 * y1^2 + 0.1207 * y1^3 endif a[good] = 1.752 - 0.316*y - (0.104 / ( (y-4.67)^2 + 0.341 )) + F_a b[good] = -3.090 + 1.825*y + (1.206 / ( (y-4.62)^2 + 0.263 )) + F_b endif; ******************************* good = where( (x GE 8) and (x LE 11), Ngood ) ;Far-UV if Ngood GT 0 then begin y = x[good] - 8. c1 = [ -1.073, -0.628, 0.137, -0.070 ] c2 = [ 13.670, 4.257, -0.420, 0.374 ] a[good] = poly(y, c1) b[good] = poly(y, c2) endif; *******************************; Now apply extinction correction to input flux vector A_V = R_V * EBV A_lambda = A_V * (a + b/R_V) if N_params() EQ 3 then flux = flux * 10.^(0.4*A_lambda) else $ funred = flux * 10.^(0.4*A_lambda) ;Derive unreddened flux return end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -