📄 eval.c
字号:
/* eval.c expression evaluator for the Netwide Assembler * * The Netwide Assembler is copyright (C) 1996 Simon Tatham and * Julian Hall. All rights reserved. The software is * redistributable under the licence given in the file "Licence" * distributed in the NASM archive. * * initial version 27/iii/95 by Simon Tatham */#include <stdio.h>#include <stdlib.h>#include <stddef.h>#include <string.h>#include <ctype.h>#include "nasm.h"#include "nasmlib.h"#include "eval.h"#include "labels.h"#define TEMPEXPRS_DELTA 128#define TEMPEXPR_DELTA 8static scanner scan; /* Address of scanner routine */static efunc error; /* Address of error reporting routine */static lfunc labelfunc; /* Address of label routine */static struct ofmt *outfmt; /* Structure of addresses of output routines */static expr **tempexprs = NULL;static int ntempexprs;static int tempexprs_size = 0;static expr *tempexpr;static int ntempexpr;static int tempexpr_size;static struct tokenval *tokval; /* The current token */static int i; /* The t_type of tokval */static void *scpriv;static loc_t *location; /* Pointer to current line's segment,offset */static int *opflags;static struct eval_hints *hint;extern int in_abs_seg; /* ABSOLUTE segment flag */extern long abs_seg; /* ABSOLUTE segment */extern long abs_offset; /* ABSOLUTE segment offset *//* * Unimportant cleanup is done to avoid confusing people who are trying * to debug real memory leaks */void eval_cleanup(void) { while (ntempexprs) nasm_free (tempexprs[--ntempexprs]); nasm_free (tempexprs);}/* * Construct a temporary expression. */static void begintemp(void) { tempexpr = NULL; tempexpr_size = ntempexpr = 0;}static void addtotemp(long type, long value) { while (ntempexpr >= tempexpr_size) { tempexpr_size += TEMPEXPR_DELTA; tempexpr = nasm_realloc(tempexpr, tempexpr_size*sizeof(*tempexpr)); } tempexpr[ntempexpr].type = type; tempexpr[ntempexpr++].value = value;}static expr *finishtemp(void) { addtotemp (0L, 0L); /* terminate */ while (ntempexprs >= tempexprs_size) { tempexprs_size += TEMPEXPRS_DELTA; tempexprs = nasm_realloc(tempexprs, tempexprs_size*sizeof(*tempexprs)); } return tempexprs[ntempexprs++] = tempexpr;}/* * Add two vector datatypes. We have some bizarre behaviour on far- * absolute segment types: we preserve them during addition _only_ * if one of the segments is a truly pure scalar. */static expr *add_vectors(expr *p, expr *q) { int preserve; preserve = is_really_simple(p) || is_really_simple(q); begintemp(); while (p->type && q->type && p->type < EXPR_SEGBASE+SEG_ABS && q->type < EXPR_SEGBASE+SEG_ABS) { int lasttype; if (p->type > q->type) { addtotemp(q->type, q->value); lasttype = q++->type; } else if (p->type < q->type) { addtotemp(p->type, p->value); lasttype = p++->type; } else { /* *p and *q have same type */ long sum = p->value + q->value; if (sum) addtotemp(p->type, sum); lasttype = p->type; p++, q++; } if (lasttype == EXPR_UNKNOWN) { return finishtemp(); } } while (p->type && (preserve || p->type < EXPR_SEGBASE+SEG_ABS)) { addtotemp(p->type, p->value); p++; } while (q->type && (preserve || q->type < EXPR_SEGBASE+SEG_ABS)) { addtotemp(q->type, q->value); q++; } return finishtemp();}/* * Multiply a vector by a scalar. Strip far-absolute segment part * if present. * * Explicit treatment of UNKNOWN is not required in this routine, * since it will silently do the Right Thing anyway. * * If `affect_hints' is set, we also change the hint type to * NOTBASE if a MAKEBASE hint points at a register being * multiplied. This allows [eax*1+ebx] to hint EBX rather than EAX * as the base register. */static expr *scalar_mult(expr *vect, long scalar, int affect_hints) { expr *p = vect; while (p->type && p->type < EXPR_SEGBASE+SEG_ABS) { p->value = scalar * (p->value); if (hint && hint->type == EAH_MAKEBASE && p->type == hint->base && affect_hints) hint->type = EAH_NOTBASE; p++; } p->type = 0; return vect;}static expr *scalarvect (long scalar) { begintemp(); addtotemp(EXPR_SIMPLE, scalar); return finishtemp();}static expr *unknown_expr (void) { begintemp(); addtotemp(EXPR_UNKNOWN, 1L); return finishtemp();}/* * The SEG operator: calculate the segment part of a relocatable * value. Return NULL, as usual, if an error occurs. Report the * error too. */static expr *segment_part (expr *e) { long seg; if (is_unknown(e)) return unknown_expr(); if (!is_reloc(e)) { error(ERR_NONFATAL, "cannot apply SEG to a non-relocatable value"); return NULL; } seg = reloc_seg(e); if (seg == NO_SEG) { error(ERR_NONFATAL, "cannot apply SEG to a non-relocatable value"); return NULL; } else if (seg & SEG_ABS) { return scalarvect(seg & ~SEG_ABS); } else if (seg & 1) { error(ERR_NONFATAL, "SEG applied to something which" " is already a segment base"); return NULL; } else { long base = outfmt->segbase(seg+1); begintemp(); addtotemp((base == NO_SEG ? EXPR_UNKNOWN : EXPR_SEGBASE+base), 1L); return finishtemp(); }}/* * Recursive-descent parser. Called with a single boolean operand, * which is TRUE if the evaluation is critical (i.e. unresolved * symbols are an error condition). Must update the global `i' to * reflect the token after the parsed string. May return NULL. * * evaluate() should report its own errors: on return it is assumed * that if NULL has been returned, the error has already been * reported. *//* * Grammar parsed is: * * expr : bexpr [ WRT expr6 ] * bexpr : rexp0 or expr0 depending on relative-mode setting * rexp0 : rexp1 [ {||} rexp1...] * rexp1 : rexp2 [ {^^} rexp2...] * rexp2 : rexp3 [ {&&} rexp3...] * rexp3 : expr0 [ {=,==,<>,!=,<,>,<=,>=} expr0 ] * expr0 : expr1 [ {|} expr1...] * expr1 : expr2 [ {^} expr2...] * expr2 : expr3 [ {&} expr3...] * expr3 : expr4 [ {<<,>>} expr4...] * expr4 : expr5 [ {+,-} expr5...] * expr5 : expr6 [ {*,/,%,//,%%} expr6...] * expr6 : { ~,+,-,SEG } expr6 * | (bexpr) * | symbol * | $ * | number */static expr *rexp0(int), *rexp1(int), *rexp2(int), *rexp3(int);static expr *expr0(int), *expr1(int), *expr2(int), *expr3(int);static expr *expr4(int), *expr5(int), *expr6(int);static expr *(*bexpr)(int);static expr *rexp0(int critical) { expr *e, *f; e = rexp1(critical); if (!e) return NULL; while (i == TOKEN_DBL_OR) { i = scan(scpriv, tokval); f = rexp1(critical); if (!f) return NULL; if (!(is_simple(e) || is_just_unknown(e)) || !(is_simple(f) || is_just_unknown(f))) { error(ERR_NONFATAL, "`|' operator may only be applied to" " scalar values"); } if (is_just_unknown(e) || is_just_unknown(f)) e = unknown_expr(); else e = scalarvect ((long) (reloc_value(e) || reloc_value(f))); } return e;}static expr *rexp1(int critical) { expr *e, *f; e = rexp2(critical); if (!e) return NULL; while (i == TOKEN_DBL_XOR) { i = scan(scpriv, tokval); f = rexp2(critical); if (!f) return NULL; if (!(is_simple(e) || is_just_unknown(e)) || !(is_simple(f) || is_just_unknown(f))) { error(ERR_NONFATAL, "`^' operator may only be applied to" " scalar values"); } if (is_just_unknown(e) || is_just_unknown(f)) e = unknown_expr(); else e = scalarvect ((long) (!reloc_value(e) ^ !reloc_value(f))); } return e;}static expr *rexp2(int critical) { expr *e, *f; e = rexp3(critical); if (!e) return NULL; while (i == TOKEN_DBL_AND) { i = scan(scpriv, tokval); f = rexp3(critical); if (!f) return NULL; if (!(is_simple(e) || is_just_unknown(e)) || !(is_simple(f) || is_just_unknown(f))) { error(ERR_NONFATAL, "`&' operator may only be applied to" " scalar values"); } if (is_just_unknown(e) || is_just_unknown(f)) e = unknown_expr(); else e = scalarvect ((long) (reloc_value(e) && reloc_value(f))); } return e;}static expr *rexp3(int critical) { expr *e, *f; long v; e = expr0(critical); if (!e) return NULL; while (i == TOKEN_EQ || i == TOKEN_LT || i == TOKEN_GT || i == TOKEN_NE || i == TOKEN_LE || i == TOKEN_GE) { int j = i; i = scan(scpriv, tokval); f = expr0(critical); if (!f) return NULL; e = add_vectors (e, scalar_mult(f, -1L, FALSE)); switch (j) { case TOKEN_EQ: case TOKEN_NE: if (is_unknown(e)) v = -1; /* means unknown */ else if (!is_really_simple(e) || reloc_value(e) != 0) v = (j == TOKEN_NE); /* unequal, so return TRUE if NE */ else v = (j == TOKEN_EQ); /* equal, so return TRUE if EQ */ break; default: if (is_unknown(e)) v = -1; /* means unknown */ else if (!is_really_simple(e)) { error(ERR_NONFATAL, "`%s': operands differ by a non-scalar", (j == TOKEN_LE ? "<=" : j == TOKEN_LT ? "<" : j == TOKEN_GE ? ">=" : ">")); v = 0; /* must set it to _something_ */ } else { int vv = reloc_value(e); if (vv == 0) v = (j == TOKEN_LE || j == TOKEN_GE); else if (vv > 0) v = (j == TOKEN_GE || j == TOKEN_GT); else /* vv < 0 */ v = (j == TOKEN_LE || j == TOKEN_LT); } break; } if (v == -1) e = unknown_expr(); else e = scalarvect(v); } return e;}static expr *expr0(int critical) { expr *e, *f; e = expr1(critical); if (!e)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -