📄 dlpshape.m
字号:
function dlpshape(T,wl,bdb,uL0,vL0,numC0,denC0,phase)
% DLPSHAPE Controller design environment for discrete-time linear systems.
% DLPSHAPE(T) produces a Discrete Nichols plot using default
% settings.
%
% DLPSHAPE(T,W,BDB,NUMP0,DENP0,NUMC0,DENC0,PHS) produces the
% Nichols plot design environment with the nominal plant transfer
% function P0(z)=NUMP0(z)/DENP0(z) where NUMP0 and DENP0
% contain the polynomial coefficients in descending powers of z
% using the user-supplied frequency vector W. BDB contains the
% QFT bounds, NUMC0 and DENC0 contain the coefficients for the
% initial controller, and PHS is the user-defined phase vector
%
% Default values can be used for many of the inputs. For example,
% DLPSHAPE(T,W,[],P0,[]) produces the nichols plot as above,
% yet without the bounds and P0 is now in complex number format.
% W corresponds to the frequency vector used to compute P0. The
% rest of the inputs are set to their defaults. NUMC0 (1),
% DENC0 (1), PHS (0:-5:360).
%
% See also LPSHAPE, PFSHAPE, DPFSHAPE, PUTQFT.
% Author: Craig Borghesani
% Date: 9/5/93
% Revised: 2/17/96 10:08 PM V1.1 updates
% Copyright (c) 1995-98 by The MathWorks, Inc.
% $Revision: 1.4 $
if nargin==1,
lpshpdef([],[],[],[],0,[],[],[],T);
elseif nargin==2,
lpshpdef(wl,[],[],[],0,[],[],[],T);
elseif nargin==3,
lpshpdef(wl,bdb,[],[],0,[],[],[],T);
elseif nargin==5,
lpshpdef(wl,bdb,uL0,vL0,0,[],[],[],T);
elseif nargin==7,
lpshpdef(wl,bdb,uL0,vL0,0,numC0,denC0,[],T);
elseif nargin==8,
lpshpdef(wl,bdb,uL0,vL0,0,numC0,denC0,phase,T);
else
error('Incorrect number of inputs');
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -