📄 sisobnd7.m
字号:
function bdb = sisobnd7(w,wbd,W,uP,vP,R,nom,uC,vC,loc,ph_r,info)
% Compute QFT bounds for the following closed-loop configuration
%
% | PG |
% WS1 <= |F -----------| <= WS2
% | 1 + PGH |
%
% SISOBNDS(7,W,WBD,WS,P,R,NOM,C,LOC,PHS) computes bounds at frequencies designated by
% WBD. WS is the performance specification, P is the frequency response
% data of the plant (complex), NOM designates the nominal plant and
% controller, C. PHS specifies at which phases (degrees) to compute
% bounds.
%
% Note: R and LOC are fixed at 0 and 1, respectively
%
% SISOBNDS(7,W,WBD,WS,P,[],C) computes bounds using default values
% for NOM ([1,1]) and PHS ([0:-5:-360]).
%
% WS for SISOBNDS(7,...) is different than all the other SISOBND# functions.
% It is a matrix where WS1 represents the first row (upper spec) and WS2
% represents the second row (lower spec).
% Authors: Yossi Chait and Craig Borghesani
% 6/17/92
% Copyright (c) 1995-98 by The MathWorks, Inc.
% $Revision: 1.4 $
m=length(ph_r); nbd=length(w);
pbds=qsubset(wbd,w);
final_state=ones(1,nbd);
state2=[];
myeps=1e-16;
ones1=ones(1,m);
% preallocating matrix for more efficient programming
bmag=[ones(m,length(pbds))*myeps;ones(m,length(pbds))*1/myeps];
[rmp,cmp]=size(uP);[rpp,cpp]=size(vP);
[rmc,cmc]=size(uC);[rpc,cpc]=size(vC);
if nom(1)>rmp, error('Non-existent index for plant cases');
elseif nom(2)>rmc, error('Non-existent index for controller cases'); end
if rmc>1, error('Cannot have an uncertain controller.');
elseif rmp==1, error('Only one case in plant. No bounds are computed'); end
pct=1; cct=1; j=1;
while j<=length(pbds),
if cmc>1, cct=pbds(j); end
if cmp>1, pct=pbds(j); end
phi=ph_r-(vP(nom(1),pct)+vC(nom(2),cct));
for k=1:rmp-1,
mag_pk=ones(rmp-k,1)*uP(k,pct);
mag_pi=uP(k+1:rmp,pct);
ph_pk=ones(rmp-k,1)*vP(k,pct);
ph_pi=vP(k+1:rmp,pct);
phi=phi(ones(rmp-k,1),:);
psi_k=ph_pk(:,ones1)+vC(cct)+phi;
psi_i=ph_pi(:,ones1)+vC(cct)+phi;
cos_k=cos(psi_k); cos_i=cos(psi_i);
AA=mag_pk.^2 .*mag_pi.^2 .*uC(cct)^2;
Bk=mag_pk.*mag_pi.*uC(cct);
Bi=Bk(:,ones1);
delta=W(pct)^2;
A_k=AA(:,ones1).*(1-1./delta);
B_k=Bk(:,ones1).*( mag_pk(:,ones1).*cos_i-mag_pi(:,ones1).*cos_k./delta);
C_k=mag_pk(:,ones1).^2-mag_pi(:,ones1).^2 ./delta;
B_i=Bi.*( mag_pi(:,ones1).*cos_k-mag_pk(:,ones1).*cos_i./delta);
C_i=mag_pi(:,ones1).^2-mag_pk(:,ones1).^2 ./delta;
A=[A_k;A_k]; B=2*[B_i;B_k]; C=[C_i;C_k];
% calling routine for determining solutions to quadratic equation
[g1,g2]=quadrtic(A,B,C); size_g1 = size(g1);
cbdb=[[[g1';g2'],bmag(:,j)];ones(2,size_g1(1)+1)];
[abvblw,state(j)]=sectbnds(cbdb,0);
bmag(:,j)=abvblw(1:2*m);
end
z=find(bmag(:,j)~=myeps & bmag(:,j)~=1/myeps & ...
bmag(:,j)~=-248 & bmag(:,j)~=248 & ...
bmag(:,j)~=-302 & bmag(:,j)~=302);
if length(z), bmag(z,j)=bmag(z,j)*uP(nom(1),pct)*uC(nom(2),cct); end
bmag(m+1:2*m,j)=(ones1')*(1/myeps);
frac=j/length(pbds);
set(info(2),'xdata',[0,frac,frac,0]);
set(info(3),'string',[int2str(floor(100*frac)),'%']);
drawnow;
j=j+1;
end
close(info(1));
bmag(bmag~=-248 & bmag~=248 & bmag~=-302 & bmag~=302) = ...
20*log10(bmag(bmag~=-248 & bmag~=248 & bmag~=-302 & bmag~=302));
bnd=[bmag; w(pbds); 7*ones(1,length(pbds))];
mesgbnds(w,pbds,state,state2,ph_r,bnd);
[jk,t]=sort(w(pbds));
if nargout==0,
plotbnds(bnd(:,t),[],180/pi*ph_r);
title('SISOBND7 Bounds'),xlabel('X: Phase (degrees) Y: Magnitude (dB)')
else
bdb=bnd(:,t);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -