⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 perlsec.pod

📁 ARM上的如果你对底层感兴趣
💻 POD
📖 第 1 页 / 共 2 页
字号:

The PATH isn't the only environment variable which can cause problems.
Because some shells may use the variables IFS, CDPATH, ENV, and
BASH_ENV, Perl checks that those are either empty or untainted when
starting subprocesses. You may wish to add something like this to your
setid and taint-checking scripts.

    delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};   # Make %ENV safer

It's also possible to get into trouble with other operations that don't
care whether they use tainted values.  Make judicious use of the file
tests in dealing with any user-supplied filenames.  When possible, do
opens and such B<after> properly dropping any special user (or group!)
privileges. Perl doesn't prevent you from opening tainted filenames for reading,
so be careful what you print out.  The tainting mechanism is intended to
prevent stupid mistakes, not to remove the need for thought.

Perl does not call the shell to expand wild cards when you pass B<system>
and B<exec> explicit parameter lists instead of strings with possible shell
wildcards in them.  Unfortunately, the B<open>, B<glob>, and
backtick functions provide no such alternate calling convention, so more
subterfuge will be required.

Perl provides a reasonably safe way to open a file or pipe from a setuid
or setgid program: just create a child process with reduced privilege who
does the dirty work for you.  First, fork a child using the special
B<open> syntax that connects the parent and child by a pipe.  Now the
child resets its ID set and any other per-process attributes, like
environment variables, umasks, current working directories, back to the
originals or known safe values.  Then the child process, which no longer
has any special permissions, does the B<open> or other system call.
Finally, the child passes the data it managed to access back to the
parent.  Because the file or pipe was opened in the child while running
under less privilege than the parent, it's not apt to be tricked into
doing something it shouldn't.

Here's a way to do backticks reasonably safely.  Notice how the B<exec> is
not called with a string that the shell could expand.  This is by far the
best way to call something that might be subjected to shell escapes: just
never call the shell at all.  

    use English;
    die "Can't fork: $!" unless defined $pid = open(KID, "-|");
    if ($pid) {	          # parent
	while (<KID>) {
	    # do something
	}
	close KID;
    } else {
	my @temp = ($EUID, $EGID);
	$EUID = $UID;
	$EGID = $GID;    # 	initgroups() also called!
	# Make sure privs are really gone
	($EUID, $EGID) = @temp;
	die "Can't drop privileges" 
		unless $UID == $EUID  && $GID eq $EGID;	
	$ENV{PATH} = "/bin:/usr/bin";
	exec 'myprog', 'arg1', 'arg2' 
	    or die "can't exec myprog: $!";
    }

A similar strategy would work for wildcard expansion via C<glob>, although
you can use C<readdir> instead.

Taint checking is most useful when although you trust yourself not to have
written a program to give away the farm, you don't necessarily trust those
who end up using it not to try to trick it into doing something bad.  This
is the kind of security checking that's useful for set-id programs and
programs launched on someone else's behalf, like CGI programs.

This is quite different, however, from not even trusting the writer of the
code not to try to do something evil.  That's the kind of trust needed
when someone hands you a program you've never seen before and says, "Here,
run this."  For that kind of safety, check out the Safe module,
included standard in the Perl distribution.  This module allows the
programmer to set up special compartments in which all system operations
are trapped and namespace access is carefully controlled.

=head2 Security Bugs

Beyond the obvious problems that stem from giving special privileges to
systems as flexible as scripts, on many versions of Unix, set-id scripts
are inherently insecure right from the start.  The problem is a race
condition in the kernel.  Between the time the kernel opens the file to
see which interpreter to run and when the (now-set-id) interpreter turns
around and reopens the file to interpret it, the file in question may have
changed, especially if you have symbolic links on your system.

Fortunately, sometimes this kernel "feature" can be disabled.
Unfortunately, there are two ways to disable it.  The system can simply
outlaw scripts with any set-id bit set, which doesn't help much.
Alternately, it can simply ignore the set-id bits on scripts.  If the
latter is true, Perl can emulate the setuid and setgid mechanism when it
notices the otherwise useless setuid/gid bits on Perl scripts.  It does
this via a special executable called B<suidperl> that is automatically
invoked for you if it's needed.

However, if the kernel set-id script feature isn't disabled, Perl will
complain loudly that your set-id script is insecure.  You'll need to
either disable the kernel set-id script feature, or put a C wrapper around
the script.  A C wrapper is just a compiled program that does nothing
except call your Perl program.   Compiled programs are not subject to the
kernel bug that plagues set-id scripts.  Here's a simple wrapper, written
in C:

    #define REAL_PATH "/path/to/script"
    main(ac, av)
	char **av;
    {
	execv(REAL_PATH, av);
    }

Compile this wrapper into a binary executable and then make I<it> rather
than your script setuid or setgid.

See the program B<wrapsuid> in the F<eg> directory of your Perl
distribution for a convenient way to do this automatically for all your
setuid Perl programs.  It moves setuid scripts into files with the same
name plus a leading dot, and then compiles a wrapper like the one above
for each of them.

In recent years, vendors have begun to supply systems free of this
inherent security bug.  On such systems, when the kernel passes the name
of the set-id script to open to the interpreter, rather than using a
pathname subject to meddling, it instead passes I</dev/fd/3>.  This is a
special file already opened on the script, so that there can be no race
condition for evil scripts to exploit.  On these systems, Perl should be
compiled with C<-DSETUID_SCRIPTS_ARE_SECURE_NOW>.  The B<Configure>
program that builds Perl tries to figure this out for itself, so you
should never have to specify this yourself.  Most modern releases of
SysVr4 and BSD 4.4 use this approach to avoid the kernel race condition.

Prior to release 5.003 of Perl, a bug in the code of B<suidperl> could
introduce a security hole in systems compiled with strict POSIX
compliance.

=head2 Protecting Your Programs

There are a number of ways to hide the source to your Perl programs,
with varying levels of "security".

First of all, however, you I<can't> take away read permission, because
the source code has to be readable in order to be compiled and
interpreted.  (That doesn't mean that a CGI script's source is
readable by people on the web, though.)  So you have to leave the
permissions at the socially friendly 0755 level.  This lets 
people on your local system only see your source.

Some people mistakenly regard this as a security problem.  If your program does
insecure things, and relies on people not knowing how to exploit those
insecurities, it is not secure.  It is often possible for someone to
determine the insecure things and exploit them without viewing the
source.  Security through obscurity, the name for hiding your bugs
instead of fixing them, is little security indeed.

You can try using encryption via source filters (Filter::* from CPAN).
But crackers might be able to decrypt it.  You can try using the
byte code compiler and interpreter described below, but crackers might
be able to de-compile it.  You can try using the native-code compiler
described below, but crackers might be able to disassemble it.  These
pose varying degrees of difficulty to people wanting to get at your
code, but none can definitively conceal it (this is true of every
language, not just Perl).

If you're concerned about people profiting from your code, then the
bottom line is that nothing but a restrictive licence will give you
legal security.  License your software and pepper it with threatening
statements like "This is unpublished proprietary software of XYZ Corp.
Your access to it does not give you permission to use it blah blah
blah."  You should see a lawyer to be sure your licence's wording will
stand up in court.

=head1 SEE ALSO

L<perlrun> for its description of cleaning up environment variables.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -