⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 flash_mtd.intel.c

📁 8032底层驱动部分。因为可以移植 所以单独来拿出来
💻 C
📖 第 1 页 / 共 2 页
字号:
/*****************************************************************************
*  Copyright Statement:
*  --------------------
*  This software is protected by Copyright and the information contained
*  herein is confidential. The software may not be copied and the information
*  contained herein may not be used or disclosed except with the written
*  permission of MediaTek Inc. (C) 2005
*
*  BY OPENING THIS FILE, BUYER HEREBY UNEQUIVOCALLY ACKNOWLEDGES AND AGREES
*  THAT THE SOFTWARE/FIRMWARE AND ITS DOCUMENTATIONS ("MEDIATEK SOFTWARE")
*  RECEIVED FROM MEDIATEK AND/OR ITS REPRESENTATIVES ARE PROVIDED TO BUYER ON
*  AN "AS-IS" BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES,
*  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
*  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT.
*  NEITHER DOES MEDIATEK PROVIDE ANY WARRANTY WHATSOEVER WITH RESPECT TO THE
*  SOFTWARE OF ANY THIRD PARTY WHICH MAY BE USED BY, INCORPORATED IN, OR
*  SUPPLIED WITH THE MEDIATEK SOFTWARE, AND BUYER AGREES TO LOOK ONLY TO SUCH
*  THIRD PARTY FOR ANY WARRANTY CLAIM RELATING THERETO. MEDIATEK SHALL ALSO
*  NOT BE RESPONSIBLE FOR ANY MEDIATEK SOFTWARE RELEASES MADE TO BUYER'S
*  SPECIFICATION OR TO CONFORM TO A PARTICULAR STANDARD OR OPEN FORUM.
*
*  BUYER'S SOLE AND EXCLUSIVE REMEDY AND MEDIATEK'S ENTIRE AND CUMULATIVE
*  LIABILITY WITH RESPECT TO THE MEDIATEK SOFTWARE RELEASED HEREUNDER WILL BE,
*  AT MEDIATEK'S OPTION, TO REVISE OR REPLACE THE MEDIATEK SOFTWARE AT ISSUE,
*  OR REFUND ANY SOFTWARE LICENSE FEES OR SERVICE CHARGE PAID BY BUYER TO
*  MEDIATEK FOR SUCH MEDIATEK SOFTWARE AT ISSUE. 
*
*  THE TRANSACTION CONTEMPLATED HEREUNDER SHALL BE CONSTRUED IN ACCORDANCE
*  WITH THE LAWS OF THE STATE OF CALIFORNIA, USA, EXCLUDING ITS CONFLICT OF
*  LAWS PRINCIPLES.  ANY DISPUTES, CONTROVERSIES OR CLAIMS ARISING THEREOF AND
*  RELATED THERETO SHALL BE SETTLED BY ARBITRATION IN SAN FRANCISCO, CA, UNDER
*  THE RULES OF THE INTERNATIONAL CHAMBER OF COMMERCE (ICC).
*
*****************************************************************************/

/*****************************************************************************
 *
 * Filename:
 * ---------
 *    flash_mtd.intel.c
 *
 * Project:
 * --------
 *   Maui
 *
 * Description:
 * ------------
 *   This is flash MTD driver for INTEL series devices.
 *
 * Author:
 * -------
 * -------
 *
 *============================================================================
 *             HISTORY
 * Below this line, this part is controlled by PVCS VM. DO NOT MODIFY!!
 *------------------------------------------------------------------------------
 * removed!
 * removed!
 * removed!
 *
 * removed!
 * removed!
 * removed!
 *
 * removed!
 * removed!
 * removed!
 *
 * removed!
 * removed!
 * removed!
 *
 * removed!
 * removed!
 * removed!
 *
 * removed!
 * removed!
 * removed!
 *------------------------------------------------------------------------------
 * Upper this line, this part is controlled by PVCS VM. DO NOT MODIFY!!
 *============================================================================*/

/********************************************************/
/*                  Include Header Files                */
/********************************************************/

#include "custom_MemoryDevice.h"
#include "flash_opt.h"
#include "flash_mtd.h"

#ifdef __INTEL_SERIES_NOR__

/* ************************************************************
         INTEL NOR FLASH MTD Flash Driver
   ************************************************************ */

#define UNLOCK_COMMAND(a) \
           {\
              fp[a] = INTEL_CMD_LOCK_SETUP;\
              fp[a] = INTEL_CMD_UNLOCK;\
              fp[a] = INTEL_CMD_RD_ARRAY;}

#define LOCK_COMMAND(a) \
           {\
              fp[a] = INTEL_CMD_LOCK_SETUP;\
              fp[a] = INTEL_CMD_LOCK;\
              fp[a] = INTEL_CMD_RD_ARRAY;}

#if  (defined(_LOW_COST_SINGLE_BANK_FLASH_) && defined(__MTK_TARGET__))
   #pragma arm section code = "SNORCODE"
#endif 

/* Support INTEL-series Page Buffer Program */
#ifdef __PAGE_BUFFER_PROGRAM__
   extern kal_uint32 PAGE_BUFFER_SIZE;
#endif

static int CheckDeviceReady_INTEL(void * DriveData, kal_uint32 BlockIndex);

#ifndef __NOR_FDM5__
static int MountDevice_INTEL(void * DriveData,void *Info )
{
   NOR_MTD_FlashInfo * FlashInfo=Info;
   NOR_Flash_MTD_Data * D = DriveData;
   kal_uint32 i=0;
   // for unlock block
   kal_uint32 block;
   volatile FLASH_CELL * fp = (volatile FLASH_CELL *) D->CurrAddr;
   kal_uint32 savedMask;
   kal_uint32 data_cache_id;


   FlashInfo->TotalBlocks = 0;
   while(D->RegionInfo[i].BlockSize != 0)
   {
      FlashInfo->BlockSize[i] = D->RegionInfo[i].BlockSize;
      FlashInfo->RegionBlocks[i] = D->RegionInfo[i].RegionBlocks;
      FlashInfo->TotalBlocks += D->RegionInfo[i].RegionBlocks;
      i++;
   }
   FlashInfo->ActualRegionNum = i;

   /* unlock all blocks */
   for(block=0; block<FlashInfo->TotalBlocks; block++)
   {
      D->CurrAddr = BlockAddress(D, block);
      fp = (volatile FLASH_CELL *) D->CurrAddr;

      savedMask = SaveAndSetIRQMask();
      data_cache_id = INT_DisableDataCache();
      UNLOCK_COMMAND(0)
      fp[0] = INTEL_CMD_RD_ID;
      if( fp[2] & INTEL_BLOCK_LOCK_FLAG)
         ASSERT(0);
      fp[0] = INTEL_CMD_RD_ARRAY;
      INT_RestoreDataCache(data_cache_id);
      RestoreIRQMask(savedMask);
   }
   return FS_NO_ERROR;
}

#endif


static void DelayAWhile_SIB(kal_uint32 Delay)
{
   
   volatile kal_uint32 CurrentTime,StartTime;
   
   StartTime = INT_GetCurrentTime(); //32KHz Fregquency Counter
   
   if(Delay != 0)
   {
       while(1)
       {
          CurrentTime = INT_GetCurrentTime();
          if(StartTime > CurrentTime)
          {
             if (CurrentTime> Delay)
                break;
          }
          else if ((CurrentTime-StartTime)>(Delay))
             break;
       }
   }
   while(1)
   {
      CurrentTime = INT_GetCurrentTime();
      if(StartTime != CurrentTime)
         break;
   }
   
   return;
}

/*-----------------------------------*/
void WaitReady_SIB(kal_uint32 addr,kal_uint16 wait_method,kal_uint32 Delay)
{
   kal_uint16 stat_data;
   kal_uint32 data_cache_id;

   data_cache_id = INT_DisableDataCache();

   DelayAWhile_SIB(Delay);
   
   while(1)
   {
      DelayAWhile_SIB(0);
      *(volatile kal_uint16*)addr = INTEL_CMD_RD_SR;
      stat_data = *(volatile kal_uint16*)addr;
      if(stat_data & INTEL_READY_FLAG)
         break;
   }
   *(volatile kal_uint16*)addr = INTEL_CMD_RD_ARRAY;

   INT_RestoreDataCache(data_cache_id);

   if(wait_method == INTEL_WAIT_PROGRAM)
   {
      /* Program */
      if (stat_data & INTEL_PROGRAM_ERROR_FLAG)
         ASSERT(0);
   }else if (wait_method == INTEL_WAIT_ERASE) {
      /* Erase */
      if (stat_data & INTEL_ERASE_ERROR_FLAG)
         ASSERT(0);   
   }else{
      /* Sibley Blank Check */ 
      return;
   }
}


/*-----------------------------------*/
void WaitReady_INTEL(kal_uint32 addr,kal_uint16 wait_method)
{
   kal_uint16 stat_data;
   kal_uint32 data_cache_id;

   data_cache_id = INT_DisableDataCache();

   while(1)
   {
      *(volatile kal_uint16*)addr = INTEL_CMD_RD_SR;
      stat_data = *(volatile kal_uint16*)addr;
      if(stat_data & INTEL_READY_FLAG)
         break;
   }
   *(volatile kal_uint16*)addr = INTEL_CMD_RD_ARRAY;

   INT_RestoreDataCache(data_cache_id);

   if(wait_method == INTEL_WAIT_PROGRAM)
   {
      /* Program */
      if (stat_data & INTEL_PROGRAM_ERROR_FLAG)
         ASSERT(0);
   }else if (wait_method == INTEL_WAIT_ERASE) {
      /* Erase */
      if (stat_data & INTEL_ERASE_ERROR_FLAG)
         ASSERT(0);   
   }else{
      /* Sibley Blank Check */ 
      return;
   }
}

/*-----------------------------------*/
#ifndef __NOR_FDM5__
static int ShutDown_INTEL(void * DriveData)
{
   NOR_Flash_MTD_Data * D = DriveData;
   volatile FLASH_CELL *fp = (volatile FLASH_CELL*)D->BaseAddr;
   
#ifndef __INTEL_SIBLEY__
   WaitReady_INTEL((kal_uint32)fp, INTEL_WAIT_ERASE);
#else
   kal_uint32 region = 0;

   while(D->RegionInfo[region].RegionBlocks != 0)
   {
      WaitReady_INTEL((kal_uint32)fp, INTEL_WAIT_ERASE);
      fp += D->RegionInfo[region].RegionBlocks * D->RegionInfo[region].BlockSize;
      region++;
   }
#endif

   D->CurrAddr = NULL;
   return FS_NO_ERROR;
}
#endif

/*-----------------------------------*/
static int EraseBlock_INTEL(void * DriveData, kal_uint32 BlockIndex)
{
   kal_uint32 savedMask;
#ifndef __NOR_FDM5__
   NOR_Flash_MTD_Data * D = DriveData;
   volatile FLASH_CELL * fp = (volatile FLASH_CELL *) D->CurrAddr;
   ASSERT((~D->Signature == (kal_uint32)D->RegionInfo));
#else 
   NOR_MTD_DATA *D= DriveData;
   volatile FLASH_CELL * fp = (volatile FLASH_CELL *)BlockAddress(D,BlockIndex);
   ASSERT(D->Signature == ~((kal_uint32)D->LayoutInfo));
#endif

   savedMask = SaveAndSetIRQMask();
   
   //Erase command
   fp[0] = INTEL_CMD_ERASE_SETUP;
   fp[0] = INTEL_CMD_ERASE_CONFIRM;
   
#ifdef _LOW_COST_SINGLE_BANK_FLASH_
   WaitReady_INTEL((kal_uint32)fp, INTEL_WAIT_ERASE);
   RestoreIRQMask(savedMask);
#else
   RestoreIRQMask(savedMask);
   WaitReady_INTEL((kal_uint32)fp, INTEL_WAIT_ERASE);
#endif   
   return FS_NO_ERROR;
}

/*-----------------------------------*/

#ifndef __INTEL_SIBLEY__
static int ProgramData_INTEL(void * DriveData, void * Address, void * Data, kal_uint32 Length)
{
   kal_uint32 savedMask;
#ifndef __NOR_FDM5__
   NOR_Flash_MTD_Data * D = DriveData;
   ASSERT((~D->Signature == (kal_uint32)D->RegionInfo));   
#else
   NOR_MTD_DATA *D= DriveData;
   ASSERT(D->Signature == ~((kal_uint32)D->LayoutInfo));
#endif


   switch (Length)
   {
      case sizeof(FLASH_CELL):
         savedMask = SaveAndSetIRQMask();
         ((volatile FLASH_CELL*)Address)[0] = INTEL_CMD_PGM_WORD;
         ((volatile FLASH_CELL*)Address)[0] = ((FLASH_CELL*)Data)[0];
#ifdef _LOW_COST_SINGLE_BANK_FLASH_
         WaitReady_INTEL((kal_uint32)Address, INTEL_WAIT_PROGRAM);         
         RestoreIRQMask(savedMask);         
#else
         RestoreIRQMask(savedMask);
         WaitReady_INTEL((kal_uint32)Address, INTEL_WAIT_PROGRAM);
#endif         
         break;

      case 1:
      {
         volatile FLASH_CELL *fp;
         kal_uint32 ofs = ((kal_uint32) Address) & (sizeof(FLASH_CELL)-1);
         FLASH_CELL Cell;
         kal_uint8 *b = (kal_uint8*) &Cell;

         fp   = (FLASH_CELL*) (((kal_uint32) Address) & ~(sizeof(FLASH_CELL)-1)); // round it down
         Cell = fp[0];

         b[ofs] = ((kal_uint8*)Data)[0];

         savedMask = SaveAndSetIRQMask();
         fp[0] = INTEL_CMD_PGM_WORD;
         fp[0] = Cell;         
#ifdef _LOW_COST_SINGLE_BANK_FLASH_
         WaitReady_INTEL((kal_uint32)fp, INTEL_WAIT_PROGRAM);
         RestoreIRQMask(savedMask);         
#else
         RestoreIRQMask(savedMask);
         WaitReady_INTEL((kal_uint32)fp, INTEL_WAIT_PROGRAM);
#endif         
      }
      break;

      case 512:
      {
         kal_uint32 i, j, k;
         volatile FLASH_CELL *fp;

         fp = (volatile FLASH_CELL *)Address;
         if((((kal_uint32)Data) % sizeof(FLASH_CELL)))   // Data address is not word-aligned
         {
            kal_uint8 *bdp =  (kal_uint8*)Data;
            FLASH_CELL Cell;
            kal_uint8 *b = (kal_uint8*)&Cell;

            j = 0;

#ifndef __PAGE_BUFFER_PROGRAM__      // word program

            for(i = 0; i < Length/sizeof(FLASH_CELL); i++)
            {
               b[0] = bdp[j++];
               b[1] = bdp[j++];
               savedMask = SaveAndSetIRQMask();
               fp[i] = INTEL_CMD_PGM_WORD;
               fp[i] = Cell;
#ifdef _LOW_COST_SINGLE_BANK_FLASH_               
               WaitReady_INTEL((kal_uint32)&fp[i], INTEL_WAIT_PROGRAM);
               RestoreIRQMask(savedMask);               
#else
               RestoreIRQMask(savedMask);
               WaitReady_INTEL((kal_uint32)&fp[i], INTEL_WAIT_PROGRAM);
#endif               
               
            }

#else       // page buffer program
            for(k = 0; k < (Length/sizeof(FLASH_CELL))/PAGE_BUFFER_SIZE; k++)
            {
               savedMask = SaveAndSetIRQMask();

               fp[k*PAGE_BUFFER_SIZE] = INTEL_CMD_CLR_SR;   //clear status register first
               fp[k*PAGE_BUFFER_SIZE] = INTEL_CMD_BUF_PGM;  //enter buffered programming
               fp[k*PAGE_BUFFER_SIZE] = PAGE_BUFFER_SIZE-1; //set data count

               for(i = 0; i < PAGE_BUFFER_SIZE; i++)
               {
                  b[0] = bdp[j++];
                  b[1] = bdp[j++];
                  fp[k*PAGE_BUFFER_SIZE+i] = Cell;         // fill data to device buffer
               }

               fp[k*PAGE_BUFFER_SIZE] = INTEL_CMD_BUF_PGM_CNF;   // set confirm command to flush buffer to flash

#ifdef _LOW_COST_SINGLE_BANK_FLASH_     
               WaitReady_INTEL((kal_uint32)&fp[k*PAGE_BUFFER_SIZE], INTEL_WAIT_PROGRAM);
               RestoreIRQMask(savedMask);
#else
               RestoreIRQMask(savedMask);
               WaitReady_INTEL((kal_uint32)&fp[k*PAGE_BUFFER_SIZE], INTEL_WAIT_PROGRAM);
#endif
            }
#endif
         }
         else   //Data address is word-aligned
         {
            FLASH_CELL *dp = (FLASH_CELL*)Data;

#ifndef __PAGE_BUFFER_PROGRAM__      // word program
            for(i = 0; i < Length/sizeof(FLASH_CELL); i++)
            {
               savedMask = SaveAndSetIRQMask();
               fp[i] = INTEL_CMD_PGM_WORD;
               fp[i] = dp[i];
#ifdef _LOW_COST_SINGLE_BANK_FLASH_      
               WaitReady_INTEL((kal_uint32)&fp[i], INTEL_WAIT_PROGRAM);           
               RestoreIRQMask(savedMask);               
#else
               RestoreIRQMask(savedMask);
               WaitReady_INTEL((kal_uint32)&fp[i], INTEL_WAIT_PROGRAM);
#endif               
            }
#else         // page buffer program
            for(k = 0; k < (Length/sizeof(FLASH_CELL))/PAGE_BUFFER_SIZE; k++)
            {
               savedMask = SaveAndSetIRQMask();

               fp[k*PAGE_BUFFER_SIZE] = INTEL_CMD_CLR_SR;    //clear status register first
               fp[k*PAGE_BUFFER_SIZE] = INTEL_CMD_BUF_PGM;   // enter buffered programming
               fp[k*PAGE_BUFFER_SIZE] = PAGE_BUFFER_SIZE-1;  // set data count

               for(i = 0; i < PAGE_BUFFER_SIZE; i++)
               {
                  fp[k*PAGE_BUFFER_SIZE+i] = dp[k*PAGE_BUFFER_SIZE+i];  // fill data to device buffer
               }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -