📄 f0xx_dacs_sinecosine.c
字号:
//-----------------------------------------------------------------------------
// F0xx_DACs_SineCosine.c
//-----------------------------------------------------------------------------
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program outputs sine and cosine waveforms using the hardware DACs
// on the C8051F005 microcontroller. The waveforms are output on pins DAC0
// and DAC1.
//
// The output of the DAC is updated upon a Timer3 interrupt.
//
// The frequency of the output waveforms is set by the #define <FREQUENCY>.
// To achieve the exact output frequency defined by <FREQUENCY>, an
// external crystal should be used.
//
// How To Test:
//
// 1) If desired, populate an external crystal on the C8051F005-TB. Change
// the #define USB_EXT_OSC and #define SYSCLK to reflect using the crystal.
// Also verify that the crystal loading capacitors (C10 - 33pf, C11 - 33pf)
// are appropriate for the crystal.
// 2) Download the code to the C8051F005 Development Board
// 3) Connect two oscillscope probes to pins DAC0 and DAC1. These pins are
// available on the J2 header on pins 48 and 50 respectively.
// 4) Run the code and confirm that there are two waveforms with the output of
// DAC1 leading the output DAC0 by 90 degrees. The frequency of both
// waveforms should be close to frequency defined by <FREQUENCY>.
//
// FID: 00X000015
// Target: C8051F0xx
// Tool chain: Keil C51 7.50 / Keil EVAL C51
// Silicon Laboratories IDE version 2.71
// Command Line: Default
//
// Release 1.0
// -Initial Revision (GP)
// -11 JUL 2006
//
//-----------------------------------------------------------------------------
// Includes
//-----------------------------------------------------------------------------
#include <c8051f000.h> // SFR declarations
//-----------------------------------------------------------------------------
// 16-bit SFR Definitions for 'F02x
//-----------------------------------------------------------------------------
sfr16 TMR3RL = 0x92; // Timer3 reload
sfr16 TMR3 = 0x94; // Timer3
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd5; // DAC1 data
//-----------------------------------------------------------------------------
// Global Constants
//-----------------------------------------------------------------------------
#define USE_EXT_OSC 0 // 0 = use internal oscillator
// 1 = use external oscillator
#if(USE_EXT_OSC == 0)
#define SYSCLK 16000000 // Internal oscillator frequency in Hz
#endif
#if(USE_EXT_OSC == 1)
#define SYSCLK 22118400 // External oscillator frequency in Hz
#endif
#define SAMPLE_RATE_DAC 100000L // DAC sampling rate in Hz
#define PHASE_PRECISION 65536 // range of phase accumulator
#define FREQUENCY 1000 // Frequency of output waveform in Hz
// <PHASE_ADD> is the change in phase between DAC samples; It is used in
// the set_DACs routine.
unsigned int PHASE_ADD = FREQUENCY * PHASE_PRECISION / SAMPLE_RATE_DAC;
int code SINE_TABLE[256] = {
0x0000, 0x0324, 0x0647, 0x096a, 0x0c8b, 0x0fab, 0x12c8, 0x15e2,
0x18f8, 0x1c0b, 0x1f19, 0x2223, 0x2528, 0x2826, 0x2b1f, 0x2e11,
0x30fb, 0x33de, 0x36ba, 0x398c, 0x3c56, 0x3f17, 0x41ce, 0x447a,
0x471c, 0x49b4, 0x4c3f, 0x4ebf, 0x5133, 0x539b, 0x55f5, 0x5842,
0x5a82, 0x5cb4, 0x5ed7, 0x60ec, 0x62f2, 0x64e8, 0x66cf, 0x68a6,
0x6a6d, 0x6c24, 0x6dca, 0x6f5f, 0x70e2, 0x7255, 0x73b5, 0x7504,
0x7641, 0x776c, 0x7884, 0x798a, 0x7a7d, 0x7b5d, 0x7c29, 0x7ce3,
0x7d8a, 0x7e1d, 0x7e9d, 0x7f09, 0x7f62, 0x7fa7, 0x7fd8, 0x7ff6,
0x7fff, 0x7ff6, 0x7fd8, 0x7fa7, 0x7f62, 0x7f09, 0x7e9d, 0x7e1d,
0x7d8a, 0x7ce3, 0x7c29, 0x7b5d, 0x7a7d, 0x798a, 0x7884, 0x776c,
0x7641, 0x7504, 0x73b5, 0x7255, 0x70e2, 0x6f5f, 0x6dca, 0x6c24,
0x6a6d, 0x68a6, 0x66cf, 0x64e8, 0x62f2, 0x60ec, 0x5ed7, 0x5cb4,
0x5a82, 0x5842, 0x55f5, 0x539b, 0x5133, 0x4ebf, 0x4c3f, 0x49b4,
0x471c, 0x447a, 0x41ce, 0x3f17, 0x3c56, 0x398c, 0x36ba, 0x33de,
0x30fb, 0x2e11, 0x2b1f, 0x2826, 0x2528, 0x2223, 0x1f19, 0x1c0b,
0x18f8, 0x15e2, 0x12c8, 0x0fab, 0x0c8b, 0x096a, 0x0647, 0x0324,
0x0000, 0xfcdc, 0xf9b9, 0xf696, 0xf375, 0xf055, 0xed38, 0xea1e,
0xe708, 0xe3f5, 0xe0e7, 0xdddd, 0xdad8, 0xd7da, 0xd4e1, 0xd1ef,
0xcf05, 0xcc22, 0xc946, 0xc674, 0xc3aa, 0xc0e9, 0xbe32, 0xbb86,
0xb8e4, 0xb64c, 0xb3c1, 0xb141, 0xaecd, 0xac65, 0xaa0b, 0xa7be,
0xa57e, 0xa34c, 0xa129, 0x9f14, 0x9d0e, 0x9b18, 0x9931, 0x975a,
0x9593, 0x93dc, 0x9236, 0x90a1, 0x8f1e, 0x8dab, 0x8c4b, 0x8afc,
0x89bf, 0x8894, 0x877c, 0x8676, 0x8583, 0x84a3, 0x83d7, 0x831d,
0x8276, 0x81e3, 0x8163, 0x80f7, 0x809e, 0x8059, 0x8028, 0x800a,
0x8000, 0x800a, 0x8028, 0x8059, 0x809e, 0x80f7, 0x8163, 0x81e3,
0x8276, 0x831d, 0x83d7, 0x84a3, 0x8583, 0x8676, 0x877c, 0x8894,
0x89bf, 0x8afc, 0x8c4b, 0x8dab, 0x8f1e, 0x90a1, 0x9236, 0x93dc,
0x9593, 0x975a, 0x9931, 0x9b18, 0x9d0e, 0x9f14, 0xa129, 0xa34c,
0xa57e, 0xa7be, 0xaa0b, 0xac65, 0xaecd, 0xb141, 0xb3c1, 0xb64c,
0xb8e4, 0xbb86, 0xbe32, 0xc0e9, 0xc3aa, 0xc674, 0xc946, 0xcc22,
0xcf05, 0xd1ef, 0xd4e1, 0xd7da, 0xdad8, 0xdddd, 0xe0e7, 0xe3f5,
0xe708, 0xea1e, 0xed38, 0xf055, 0xf375, 0xf696, 0xf9b9, 0xfcdc,
};
//-----------------------------------------------------------------------------
// Function Prototypes
//-----------------------------------------------------------------------------
void main(void);
void OSCILLATOR_Init(void);
void DAC0_Init (void);
void DAC1_Init (void);
void TIMER3_Init(int counts);
void Set_DACs(void);
//-----------------------------------------------------------------------------
// MAIN Routine
//-----------------------------------------------------------------------------
void main (void)
{
WDTCN = 0xde; // Disable watchdog timer
WDTCN = 0xad;
OSCILLATOR_Init (); // Initialize oscillator
DAC0_Init (); // Initialize DAC0
DAC1_Init (); // Initialize DAC1
TIMER3_Init(SYSCLK/SAMPLE_RATE_DAC);// Initialize Timer3 to overflow
// <SAMPLE_RATE_DAC> times per
// second
EA = 1; // Enable global interrupts
while(1);
}
//-----------------------------------------------------------------------------
// Interrupt Service Routines
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// TIMER3_ISR -- Wave Generator
//-----------------------------------------------------------------------------
//
// This ISR is called on Timer3 overflows. Timer3 is set to auto-reload mode
// and is used to schedule the DAC output sample rate in this example.
//
void TIMER3_ISR (void) interrupt 14
{
TMR3CN &= ~0x80; // Clear Timer3 overflow flag
Set_DACs();
}
//-----------------------------------------------------------------------------
// Initialization Routines
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// OSCILLATOR_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// This routine initializes the system clock to either the 16 Mhz or the
// external crystal oscillator depending on #define USB_EXT_OSC
//
//-----------------------------------------------------------------------------
void OSCILLATOR_Init (void)
{
#if(USE_EXT_OSC == 0)
OSCICN = 0x07; // Set internal oscillator to 16 Mhz
#endif
#if (USE_EXT_OSC == 1)
int i; // Delay counter
OSCXCN = 0x67; // Start external oscillator with
// 22.1184 MHz crystal
for (i = 0; i < 256; i++); // XTLVLD blanking interval (>1ms)
while (!(OSCXCN & 0x80)); // Wait for crystal osc. to settle
OSCICN = 0x88; // Select external oscillator as SYSCLK
// source and enable missing clock
// detector
#endif
}
//-----------------------------------------------------------------------------
// DAC0_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// Enable the DAC and the VREF buffer.
//
//-----------------------------------------------------------------------------
void DAC0_Init(void)
{
DAC0CN = 0x87; // Enable DAC0 in left-justified mode
REF0CN |= 0x03; // Enable the internal VREF (2.4v) and
// the Bias Generator
}
//-----------------------------------------------------------------------------
// DAC1_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// Enable the DAC and the VREF buffer.
//
//-----------------------------------------------------------------------------
void DAC1_Init(void)
{
DAC1CN = 0x87; // Enable DAC1 in left-justified mode
REF0CN |= 0x03; // Enable the internal VREF (2.4v) and
// the Bias Generator
}
//-----------------------------------------------------------------------------
// TIMER3_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters :
// 1) int counts - calculated Timer overflow rate
// range is positive range of integer: 0 to 32767
//
// Configure Timer3 to auto-reload at interval specified by <counts> using
// SYSCLK as its time base.
//
//-----------------------------------------------------------------------------
void TIMER3_Init (int counts)
{
TMR3CN = 0; // STOP timer; set to auto-reload mode
TMR3CN |= 0x02; // Timer3 counts SYSCLKs
TMR3RL = -counts; // Set reload value
TMR3 = TMR3RLL; // Initialize Timer to reload value
EIE2 |= 0x01; // Enable Timer3 interrupts
TMR3CN |= 0x04; // Start Timer3
}
//-----------------------------------------------------------------------------
// Set_DACs
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// Calculates the update values for the two DACs using SINE_TABLE.
//
//-----------------------------------------------------------------------------
void Set_DACs(void)
{
static unsigned phase_acc = 0; // Holds phase accumulator
int SIN_temp, COS_temp; // Temporary 16-bit variables
unsigned char index; // Index into SINE table
phase_acc += PHASE_ADD; // Increment phase accumulator
index = phase_acc >> 8;
SIN_temp = SINE_TABLE[index]; // Read the table value
index += 64; // 90 degree phase shift
COS_temp = SINE_TABLE[index];
// Add a DC bias to change the the rails from a bipolar (-32768 to 32767)
// to unipolar (0 to 65535)
// Note: the XOR with 0x8000 translates the bipolar quantity into
// a unipolar quantity.
DAC0 = SIN_temp ^ 0x8000; // Write to DAC0
DAC1 = COS_temp ^ 0x8000; // Write to DAC1
}
//-----------------------------------------------------------------------------
// End Of File
//-----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -