📄 f00x_spi0_eeprom_polled_mode.c
字号:
// P1.5 = GP I/O (Open-Drain Output/Input)
// P1.6 = GP I/O (Push-Pull Output) (LED D3 - Target Board)
// P1.7 = GP I/O (Open-Drain Output/Input) (Switch SW2 - Target Board)
//
//-----------------------------------------------------------------------------
void PORT_Init (void)
{
PRT0CF = 0x85;
PRT1CF = 0x40;
XBR0 = 0x02;
XBR1 = 0x00;
XBR2 = 0x40;
}
//-----------------------------------------------------------------------------
// TIMER2_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// Initializes Timer2 to be clocked by SYSCLK for use as a delay timer.
//
//-----------------------------------------------------------------------------
void TIMER2_Init (void)
{
CKCON |= 0x20;
}
//-----------------------------------------------------------------------------
// SPI0_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// Configures SPI0 to use 4-wire Single-Master mode. The SPI timing is
// configured for Mode 0,0 (data centered on first edge of clock phase and
// SCK line low in idle state). The SPI clock is set to 1.6 MHz (nominal).
// The slave select pin is set to 1.
//
//-----------------------------------------------------------------------------
void SPI0_Init()
{
SPI0CFG = 0x07; // Data sampled on 1st SCK rising edge
// 8-bit data words
SPI0CN = 0x03; // Master mode; SPI enabled; flags
// cleared
// Note: This example uses the internal oscillator as SYSCLK. This
// oscillator is specified with a tolerance of 16 MHz +/- 20%
// The equation for SPI0CKR is (SYSCLK/(2*F_SCK_MAX))-1, but this yields
// a SPI frequency that could be more than 2 MHz if the internal oscillator
// frequency is 16 MHz + 20% (19.2 MHz). But, 2 MHz is the max frequency
// spec of the EEPROM used here. So, the "-1" term is omitted in the
// following usage:
SPI0CKR = (SYSCLK/(2*F_SCK_MAX));
EEPROM_CS = 1; // Deactivate Slave Select
}
//-----------------------------------------------------------------------------
// Init_Device
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// Calls all device initialization functions.
//
//-----------------------------------------------------------------------------
void Init_Device (void)
{
Reset_Sources_Init ();
OSCILLATOR_Init ();
PORT_Init ();
TIMER2_Init ();
SPI0_Init ();
}
//-----------------------------------------------------------------------------
// Support Subroutines
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Delay_us
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : 1. time_us - time delay in microseconds
// range: 1 to 255
//
// Creates a delay for the specified time (in microseconds) using TIMER2. The
// time tolerance is approximately +/-50 ns (1/SYSCLK + function call time).
//
//-----------------------------------------------------------------------------
void Delay_us (BYTE time_us)
{
TR2 = 0; // Stop timer
TF2 = 0; // Clear timer overflow flag
TMR2 = -( (UINT)(SYSCLK/1000000) * (UINT)(time_us) );
TR2 = 1; // Start timer
while (!TF2); // Wait till timer overflow occurs
TR2 = 0; // Stop timer
}
//-----------------------------------------------------------------------------
// Delay_ms
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : 1. time_ms - time delay in milliseconds
// range: 1 to 255
//
// Creates a delay for the specified time (in milliseconds) using TIMER2. The
// time tolerance is approximately +/-50 ns (1/SYSCLK + function call time).
//
//-----------------------------------------------------------------------------
void Delay_ms (BYTE time_ms)
{
BYTE i;
while(time_ms--)
for(i = 0; i< 10; i++) // 10 * 100 microsecond delay
Delay_us (100);
}
//-----------------------------------------------------------------------------
// EEPROM_Write
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : 1. address - the destination EEPROM address.
// range: 0 to EEPROM_CAPACITY
// 2. value - the value to write.
// range: 0x00 to 0xFF
//
// Writes one byte to the specified address in the EEPROM. This function polls
// the EEPROM status register after the write operation, and returns only after
// the status register indicates that the write cycle is complete. This is to
// prevent from having to check the status register before a read operation.
//
//-----------------------------------------------------------------------------
void EEPROM_Write (UINT address, BYTE value)
{
// Writing a byte to the EEPROM is a five-step operation.
// Step1: Set the Write Enable Latch to 1
EEPROM_CS = 0; // Step1.1: Activate Slave Select
SPI0DAT = EEPROM_CMD_WREN; // Step1.2: Send the WREN command
while (!SPIF); // Step1.3: Wait for end of transfer
SPIF = 0; // Step1.4: Clear the SPI intr. flag
EEPROM_CS = 1; // Step1.5: Deactivate Slave Select
Delay_us (1); // Step1.6: Wait for at least
// T_NSS_DISABLE_MIN
// Step2: Send the WRITE command
EEPROM_CS = 0;
SPI0DAT = EEPROM_CMD_WRITE;
while (!SPIF);
SPIF = 0;
// Step3: Send the EEPROM destination address (MSB first)
SPI0DAT = (BYTE)((address >> 8) & 0x00FF);
while (!SPIF);
SPIF = 0;
SPI0DAT = (BYTE)(address & 0x00FF);
while (!SPIF);
SPIF = 0;
// Step4: Send the value to write
SPI0DAT = value;
while (!SPIF);
SPIF = 0;
EEPROM_CS = 1;
Delay_us (1);
// Step5: Poll on the Write In Progress (WIP) bit in Read Status Register
do
{
EEPROM_CS = 0; // Activate Slave Select
SPI0DAT = EEPROM_CMD_RDSR; // Send the Read Status Register command
while (!SPIF); // Wait for the command to be sent out
SPIF = 0;
SPI0DAT = 0; // Dummy write to output serial clock
while (!SPIF); // Wait for the register to be read
SPIF = 0;
EEPROM_CS = 1; // Deactivate Slave Select after read
Delay_us (1);
} while( (SPI0DAT & 0x01) == 0x01 );
}
//-----------------------------------------------------------------------------
// EEPROM_Read
//-----------------------------------------------------------------------------
//
// Return Value : The value that was read from the EEPROM
// range: 0x00 to 0xFF
// Parameters : 1. address - the source EEPROM address.
// range: 0 to EEPROM_CAPACITY
//
// Reads one byte from the specified EEPROM address.
//
//-----------------------------------------------------------------------------
BYTE EEPROM_Read (UINT address)
{
// Reading a byte from the EEPROM is a three-step operation.
// Step1: Send the READ command
EEPROM_CS = 0; // Activate Slave Select
SPI0DAT = EEPROM_CMD_READ;
while (!SPIF);
SPIF = 0;
// Step2: Send the EEPROM source address (MSB first)
SPI0DAT = (BYTE)((address >> 8) & 0x00FF);
while (!SPIF);
SPIF = 0;
SPI0DAT = (BYTE)(address & 0x00FF);
while (!SPIF);
SPIF = 0;
// Step3: Read the value returned
SPI0DAT = 0; // Dummy write to output serial clock
while (!SPIF); // Wait for the value to be read
SPIF = 0;
EEPROM_CS = 1; // Deactivate Slave Select
Delay_us (1);
return SPI0DAT;
}
//-----------------------------------------------------------------------------
// End Of File
//-----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -