📄 devec3.asv
字号:
function [bestmem,bestval,nfeval] = devec3(fname,VTR,D,XVmin,XVmax,y,NP,itermax,F,CR,strategy,refresh);% minimization of a user-supplied function with respect to x(1:D),% using the differential evolution (DE) algorithm of Rainer Storn% (http://www.icsi.berkeley.edu/~storn/code.html)% % Special thanks go to Ken Price (kprice@solano.community.net) and% Arnold Neumaier (http://solon.cma.univie.ac.at/~neum/) for their% valuable contributions to improve the code.% % Strategies with exponential crossover, further input variable% tests, and arbitrary function name implemented by Jim Van Zandt % <jrv@vanzandt.mv.com>, 12/97.%% Output arguments:% ----------------% bestmem parameter vector with best solution% bestval best objective function value% nfeval number of function evaluations%% Input arguments: % ---------------%% fname string naming a function f(x,y) to minimize% VTR "Value To Reach". devec3 will stop its minimization% if either the maximum number of iterations "itermax"% is reached or the best parameter vector "bestmem" % has found a value f(bestmem,y) <= VTR.% D number of parameters of the objective function % XVmin vector of lower bounds XVmin(1) ... XVmin(D)% of initial population% *** note: these are not bound constraints!! ***% XVmax vector of upper bounds XVmax(1) ... XVmax(D)% of initial population% y problem data vector (must remain fixed during the% minimization)% NP number of population members% itermax maximum number of iterations (generations)% F DE-stepsize F from interval [0, 2]% CR crossover probability constant from interval [0, 1]% strategy 1 --> DE/best/1/exp 6 --> DE/best/1/bin% 2 --> DE/rand/1/exp 7 --> DE/rand/1/bin% 3 --> DE/rand-to-best/1/exp 8 --> DE/rand-to-best/1/bin% 4 --> DE/best/2/exp 9 --> DE/best/2/bin% 5 --> DE/rand/2/exp else DE/rand/2/bin% Experiments suggest that /bin likes to have a slightly% larger CR than /exp.% refresh intermediate output will be produced after "refresh"% iterations. No intermediate output will be produced% if refresh is < 1%% The first four arguments are essential (though they have% default values, too). In particular, the algorithm seems to% work well only if [XVmin,XVmax] covers the region where the% global minimum is expected. DE is also somewhat sensitive to% the choice of the stepsize F. A good initial guess is to% choose F from interval [0.5, 1], e.g. 0.8. CR, the crossover% probability constant from interval [0, 1] helps to maintain% the diversity of the population and is rather uncritical. The% number of population members NP is also not very critical. A% good initial guess is 10*D. Depending on the difficulty of the% problem NP can be lower than 10*D or must be higher than 10*D% to achieve convergence.% If the parameters are correlated, high values of CR work better.% The reverse is true for no correlation.%% default values in case of missing input arguments:% VTR = 1.e-6;% D = 2; % XVmin = [-2 -2]; % XVmax = [2 2]; % y=[];% NP = 10*D; % itermax = 200; % F = 0.8; % CR = 0.5; % strategy = 7;% refresh = 10; %% Cost function: function result = f(x,y);% has to be defined by the user and is minimized% w.r. to x(1:D).%% Example to find the minimum of the Rosenbrock saddle:% ----------------------------------------------------% Define f.m as:% function result = f(x,y);% result = 100*(x(2)-x(1)^2)^2+(1-x(1))^2;% end% Then type:%% VTR = 1.e-6;% D = 2; % XVmin = [-2 -2]; % XVmax = [2 2]; % [bestmem,bestval,nfeval] = devec3("f",VTR,D,XVmin,XVmax);%% The same example with a more complete argument list is handled in % run1.m%% About devec3.m% --------------% Differential Evolution for MATLAB% Copyright (C) 1996, 1997 R. Storn% International Computer Science Institute (ICSI)% 1947 Center Street, Suite 600% Berkeley, CA 94704% E-mail: storn@icsi.berkeley.edu% WWW: http://http.icsi.berkeley.edu/~storn%% devec is a vectorized variant of DE which, however, has a% propertiy which differs from the original version of DE:% 1) The random selection of vectors is performed by shuffling the% population array. Hence a certain vector can't be chosen twice% in the same term of the perturbation expression.%% Due to the vectorized expressions devec3 executes fairly fast% in MATLAB's interpreter environment.%% This program is free software; you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation; either version 1, or (at your option)% any later version.%% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details. A copy of the GNU % General Public License can be obtained from the % Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.%-----Check input variables---------------------------------------------global FunCount;err=[];if nargin<1, error('devec3 1st argument must be function name'); else if exist(fname)<1; err(1,length(err)+1)=1; end; end;if nargin<2, VTR = 1.e-6; else if length(VTR)~=1; err(1,length(err)+1)=2; end; end;if nargin<3, D = 2; else if length(D)~=1; err(1,length(err)+1)=3; end; end; if nargin<4, XVmin = [-2 -2];else if length(XVmin)~=D; err(1,length(err)+1)=4; end; end; if nargin<5, XVmax = [2 2]; else if length(XVmax)~=D; err(1,length(err)+1)=5; end; end; if nargin<6, y=[]; end; if nargin<7, NP = 10*D; else if length(NP)~=1; err(1,length(err)+1)=7; end; end; if nargin<8, itermax = 200; else if length(itermax)~=1; err(1,length(err)+1)=8; end; end; if nargin<9, F = 0.8; else if length(F)~=1; err(1,length(err)+1)=9; end; end;if nargin<10, CR = 0.5; else if length(CR)~=1; err(1,length(err)+1)=10; end; end; if nargin<11, strategy = 7; else if length(strategy)~=1; err(1,length(err)+1)=11; end; end;if nargin<12, refresh = 10; else if length(refresh)~=1; err(1,length(err)+1)=12; end; end; if length(err)>0 fprintf(stdout,'error in parameter %d\n', err); usage('devec3 (string,scalar,scalar,vector,vector,any,integer,integer,scalar,scalar,integer,integer)'); endif (NP < 5) NP=5; fprintf(1,' NP increased to minimal value 5\n');endif ((CR < 0) | (CR > 1)) CR=0.5; fprintf(1,'CR should be from interval [0,1]; set to default value 0.5\n');endif (itermax <= 0) itermax = 200; fprintf(1,'itermax should be > 0; set to default value 200\n');endrefresh = floor(refresh);%-----Initialize population and some arrays-------------------------------pop = zeros(NP,D); %initialize pop to gain speed%----pop is a matrix of size NPxD. It will be initialized-------------%----with random values between the min and max values of the---------%----parameters-------------------------------------------------------for i=1:NP pop(i,:) = XVmin + rand(1,D).*(XVmax - XVmin);endpopold = zeros(size(pop)); % toggle populationval = zeros(1,NP); % create and reset the "cost array"bestmem = zeros(1,D); % best population member everbestmemit = zeros(1,D); % best population member in iterationnfeval = 0; % number of function evaluations%------Evaluate the best member after initialization----------------------ibest = 1; % start with first population memberval(1) = feval(fname,pop(ibest,:),y);bestval = val(1); % best objective function value so farnfeval = nfeval + 1;for i=2:NP % check the remaining members val(i) = feval(fname,pop(i,:),y); nfeval = nfeval + 1; if (val(i) < bestval) % if member is better ibest = i; % save its location bestval = val(i); end endbestmemit = pop(ibest,:); % best member of current iterationbestvalit = bestval; % best value of current iterationbestmem = bestmemit; % best member ever%------DE-Minimization---------------------------------------------%------popold is the population which has to compete. It is--------%------static through one iteration. pop is the newly--------------%------emerging population.----------------------------------------pm1 = zeros(NP,D); % initialize population matrix 1pm2 = zeros(NP,D); % initialize population matrix 2pm3 = zeros(NP,D); % initialize population matrix 3pm4 = zeros(NP,D); % initialize population matrix 4pm5 = zeros(NP,D); % initialize population matrix 5bm = zeros(NP,D); % initialize bestmember matrixui = zeros(NP,D); % intermediate population of perturbed vectorsmui = zeros(NP,D); % mask for intermediate populationmpo = zeros(NP,D); % mask for old populationrot = (0:1:NP-1); % rotating index array (size NP)rotd= (0:1:D-1); % rotating index array (size D)rt = zeros(NP); % another rotating index arrayrtd = zeros(D); % rotating index array for exponential crossovera1 = zeros(NP); % index arraya2 = zeros(NP); % index arraya3 = zeros(NP); % index arraya4 = zeros(NP); % index arraya5 = zeros(NP); % index arrayind = zeros(4);iter = 1;while (bestval > VTR) popold = pop; % save the old population ind = randperm(4); % index pointer array a1 = randperm(NP); % shuffle locations of vectors rt = rem(rot+ind(1),NP); % rotate indices by ind(1) positions a2 = a1(rt+1); % rotate vector locations rt = rem(rot+ind(2),NP); a3 = a2(rt+1); rt = rem(rot+ind(3),NP); a4 = a3(rt+1); rt = rem(rot+ind(4),NP); a5 = a4(rt+1); pm1 = popold(a1,:); % shuffled population 1 pm2 = popold(a2,:); % shuffled population 2 pm3 = popold(a3,:); % shuffled population 3 pm4 = popold(a4,:); % shuffled population 4 pm5 = popold(a5,:); % shuffled population 5 for i=1:NP % population filled with the best member bm(i,:) = bestmemit; % of the last iteration end mui = rand(NP,D) < CR; % all random numbers < CR are 1, 0 otherwise if (strategy > 5) st = strategy-5; % binomial crossover else st = strategy; % exponential crossover mui=sort(mui'); % transpose, collect 1's in each column for i=1:NP n=floor(rand*D); if n > 0 rtd = rem(rotd+n,D); mui(:,i) = mui(rtd+1,i); %rotate column i by n end end mui = mui'; % transpose back end mpo = mui < 0.5; % inverse mask to mui if (st == 1) % DE/best/1 ui = bm + F*(pm1 - pm2); % differential variation ui = popold.*mpo + ui.*mui; % crossover elseif (st == 2) % DE/rand/1 ui = pm3 + F*(pm1 - pm2); % differential variation ui = popold.*mpo + ui.*mui; % crossover elseif (st == 3) % DE/rand-to-best/1 ui = popold + F*(bm-popold) + F*(pm1 - pm2); ui = popold.*mpo + ui.*mui; % crossover elseif (st == 4) % DE/best/2 ui = bm + F*(pm1 - pm2 + pm3 - pm4); % differential variation ui = popold.*mpo + ui.*mui; % crossover elseif (st == 5) % DE/rand/2 ui = pm5 + F*(pm1 - pm2 + pm3 - pm4); % differential variation ui = popold.*mpo + ui.*mui; % crossover end for i=1:D tl = find(ui(:,i) < XVmin(i)); tu = find(ui(:,i) > XVmax(i)); ui(tl,i) = (XVmin(i) + pop(tl,i))/2; ui(tu,i) = (XVmax(i) + pop(tu,i))/2; end; % nitching introduced here% we can use a4 for i=1:2:length(a4) k1 = a4((i-1) * 2 + 1); k2 = a4(i * 2); e1 = norm(pop(k1,:) - ui(k1,:)) pop(k1,:) pop(k2,:) ui(k1,:) ui(k2,:)end;%-----Select which vectors are allowed to enter the new population------------ for i=1:NP tempval = feval(fname,ui(i,:),y); % check cost of competitor nfeval = nfeval + 1; if (tempval <= val(i)) % if competitor is better than value in "cost array" pop(i,:) = ui(i,:); % replace old vector with new one (for new iteration) val(i) = tempval; % save value in "cost array" %----we update bestval only in case of success to save time----------- if (tempval < bestval) % if competitor better than the best one ever bestval = tempval; % new best value bestmem = ui(i,:); % new best parameter vector ever end end end %---end for imember=1:NP bestmemit = bestmem; % freeze the best member of this iteration for the coming % iteration. This is needed for some of the strategies.%----Output section---------------------------------------------------------- if (refresh > 0) if (rem(iter,refresh) == 0) fprintf(1,'Iteration: %d, Best: %f, F: %f, CR: %f, NP: %d\n',iter,bestval,F,CR,NP); for n=1:D fprintf(1,'best(%d) = %f\n',n,bestmem(n)); end end end iter = iter + 1; if (FunCount >= 8e5) return; end;end %---end while ((iter < itermax) ...
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -