📄 deopt.m
字号:
FM_pm3 = zeros(I_NP,I_D); % initialize population matrix 3
FM_pm4 = zeros(I_NP,I_D); % initialize population matrix 4
FM_pm5 = zeros(I_NP,I_D); % initialize population matrix 5
FM_bm = zeros(I_NP,I_D); % initialize FVr_bestmember matrix
FM_ui = zeros(I_NP,I_D); % intermediate population of perturbed vectors
FM_mui = zeros(I_NP,I_D); % mask for intermediate population
FM_mpo = zeros(I_NP,I_D); % mask for old population
FVr_rot = (0:1:I_NP-1); % rotating index array (size I_NP)
FVr_rotd = (0:1:I_D-1); % rotating index array (size I_D)
FVr_rt = zeros(I_NP); % another rotating index array
FVr_rtd = zeros(I_D); % rotating index array for exponential crossover
FVr_a1 = zeros(I_NP); % index array
FVr_a2 = zeros(I_NP); % index array
FVr_a3 = zeros(I_NP); % index array
FVr_a4 = zeros(I_NP); % index array
FVr_a5 = zeros(I_NP); % index array
FVr_ind = zeros(4);
FM_meanv = ones(I_NP,I_D);
I_iter = 1;
while ((I_iter < I_itermax) & (S_bestval.FVr_oa(1) > F_VTR))
FM_popold = FM_pop; % save the old population
S_struct.FM_pop = FM_pop;
S_struct.FVr_bestmem = FVr_bestmem;
FVr_ind = randperm(4); % index pointer array
FVr_a1 = randperm(I_NP); % shuffle locations of vectors
FVr_rt = rem(FVr_rot+FVr_ind(1),I_NP); % rotate indices by ind(1) positions
FVr_a2 = FVr_a1(FVr_rt+1); % rotate vector locations
FVr_rt = rem(FVr_rot+FVr_ind(2),I_NP);
FVr_a3 = FVr_a2(FVr_rt+1);
FVr_rt = rem(FVr_rot+FVr_ind(3),I_NP);
FVr_a4 = FVr_a3(FVr_rt+1);
FVr_rt = rem(FVr_rot+FVr_ind(4),I_NP);
FVr_a5 = FVr_a4(FVr_rt+1);
FM_pm1 = FM_popold(FVr_a1,:); % shuffled population 1
FM_pm2 = FM_popold(FVr_a2,:); % shuffled population 2
FM_pm3 = FM_popold(FVr_a3,:); % shuffled population 3
FM_pm4 = FM_popold(FVr_a4,:); % shuffled population 4
FM_pm5 = FM_popold(FVr_a5,:); % shuffled population 5
for k=1:I_NP % population filled with the best member
FM_bm(k,:) = FVr_bestmemit; % of the last iteration
end
FM_mui = rand(I_NP,I_D) < F_CR; % all random numbers < F_CR are 1, 0 otherwise
%----Insert this if you want exponential crossover.----------------
%FM_mui = sort(FM_mui'); % transpose, collect 1's in each column
%for k = 1:I_NP
% n = floor(rand*I_D);
% if (n > 0)
% FVr_rtd = rem(FVr_rotd+n,I_D);
% FM_mui(:,k) = FM_mui(FVr_rtd+1,k); %rotate column k by n
% end
%end
%FM_mui = FM_mui'; % transpose back
%----End: exponential crossover------------------------------------
FM_mpo = FM_mui < 0.5; % inverse mask to FM_mui
if (I_strategy == 1) % DE/rand/1
FM_ui = FM_pm3 + F_weight*(FM_pm1 - FM_pm2); % differential variation
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui; % crossover
FM_origin = FM_pm3;
elseif (I_strategy == 2) % DE/local-to-best/1
FM_ui = FM_popold + F_weight*(FM_bm-FM_popold) + F_weight*(FM_pm1 - FM_pm2);
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui;
FM_origin = FM_popold;
elseif (I_strategy == 3) % DE/best/1 with jitter
FM_ui = FM_bm + (FM_pm1 - FM_pm2).*((1-0.9999)*rand(I_NP,I_D)+F_weight);
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui;
FM_origin = FM_bm;
elseif (I_strategy == 4) % DE/rand/1 with per-vector-dither
f1 = ((1-F_weight)*rand(I_NP,1)+F_weight);
for k=1:I_D
FM_pm5(:,k)=f1;
end
FM_ui = FM_pm3 + (FM_pm1 - FM_pm2).*FM_pm5; % differential variation
FM_origin = FM_pm3;
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui; % crossover
elseif (I_strategy == 5) % DE/rand/1 with per-vector-dither
f1 = ((1-F_weight)*rand+F_weight);
FM_ui = FM_pm3 + (FM_pm1 - FM_pm2)*f1; % differential variation
FM_origin = FM_pm3;
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui; % crossover
else % either-or-algorithm
if (rand < 0.5); % Pmu = 0.5
FM_ui = FM_pm3 + F_weight*(FM_pm1 - FM_pm2);% differential variation
FM_origin = FM_pm3;
else % use F-K-Rule: K = 0.5(F+1)
FM_ui = FM_pm3 + 0.5*(F_weight+1.0)*(FM_pm1 + FM_pm2 - 2*FM_pm3);
end
FM_ui = FM_popold.*FM_mpo + FM_ui.*FM_mui; % crossover
end
%-----Optional parent+child selection-----------------------------------------
%-----Select which vectors are allowed to enter the new population------------
for k=1:I_NP
%=====Only use this if boundary constraints are needed==================
if (I_bnd_constr == 1)
for j=1:I_D %----boundary constraints via bounce back-------
if (FM_ui(k,j) > FVr_maxbound(j))
FM_ui(k,j) = FVr_maxbound(j) + rand*(FM_origin(k,j) - FVr_maxbound(j));
end
if (FM_ui(k,j) < FVr_minbound(j))
FM_ui(k,j) = FVr_minbound(j) + rand*(FM_origin(k,j) - FVr_minbound(j));
end
end
end
%=====End boundary constraints==========================================
S_tempval = feval(fname,FM_ui(k,:),S_struct); % check cost of competitor
I_nfeval = I_nfeval + 1;
if (left_win(S_tempval,S_val(k)) == 1)
FM_pop(k,:) = FM_ui(k,:); % replace old vector with new one (for new iteration)
S_val(k) = S_tempval; % save value in "cost array"
%----we update S_bestval only in case of success to save time-----------
if (left_win(S_tempval,S_bestval) == 1)
S_bestval = S_tempval; % new best value
FVr_bestmem = FM_ui(k,:); % new best parameter vector ever
end
end
end % for k = 1:NP
FVr_bestmemit = FVr_bestmem; % freeze the best member of this iteration for the coming
% iteration. This is needed for some of the strategies.
%----Output section----------------------------------------------------------
if (I_refresh > 0)
if ((rem(I_iter,I_refresh) == 0) | I_iter == 1)
fprintf(1,'Iteration: %d, Best: %f, F_weight: %f, F_CR: %f, I_NP: %d\n',I_iter,S_bestval.FVr_oa(1),F_weight,F_CR,I_NP);
%var(FM_pop)
format long e;
for n=1:I_D
fprintf(1,'best(%d) = %g\n',n,FVr_bestmem(n));
end
if (I_plotting == 1)
PlotIt(FVr_bestmem,I_iter,S_struct);
end
end
end
I_iter = I_iter + 1;
end %---end while ((I_iter < I_itermax) ...
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -