📄 devec3.m
字号:
ibest = i; % save its location bestval = val(i); endendbestmemit = pop(ibest,:); % best member of current iterationbestvalit = bestval; % best value of current iterationbestmem = bestmemit; % best member ever%------DE-Minimization---------------------------------------------%------popold is the population which has to compete. It is--------%------static through one iteration. pop is the newly--------------%------emerging population.----------------------------------------pm1 = zeros(NP,D); % initialize population matrix 1pm2 = zeros(NP,D); % initialize population matrix 2pm3 = zeros(NP,D); % initialize population matrix 3pm4 = zeros(NP,D); % initialize population matrix 4pm5 = zeros(NP,D); % initialize population matrix 5bm = zeros(NP,D); % initialize bestmember matrixui = zeros(NP,D); % intermediate population of perturbed vectorsmui = zeros(NP,D); % mask for intermediate populationmpo = zeros(NP,D); % mask for old populationrot = (0:1:NP-1); % rotating index array (size NP)rotd= (0:1:D-1); % rotating index array (size D)rt = zeros(NP); % another rotating index arrayrtd = zeros(D); % rotating index array for exponential crossovera1 = zeros(NP); % index arraya2 = zeros(NP); % index arraya3 = zeros(NP); % index arraya4 = zeros(NP); % index arraya5 = zeros(NP); % index arrayind = zeros(4);iter = 1;while (bestval > VTR & iter < itermax) popold = pop; % save the old population ind = randperm(4); % index pointer array a1 = randperm(NP); % shuffle locations of vectors rt = rem(rot+ind(1),NP); % rotate indices by ind(1) positions a2 = a1(rt+1); % rotate vector locations rt = rem(rot+ind(2),NP); a3 = a2(rt+1); rt = rem(rot+ind(3),NP); a4 = a3(rt+1); rt = rem(rot+ind(4),NP); a5 = a4(rt+1); pm1 = popold(a1,:); % shuffled population 1 pm2 = popold(a2,:); % shuffled population 2 pm3 = popold(a3,:); % shuffled population 3 pm4 = popold(a4,:); % shuffled population 4 pm5 = popold(a5,:); % shuffled population 5 for i=1:NP % population filled with the best member bm(i,:) = bestmemit; % of the last iteration end mui = rand(NP,D) < CR; % all random numbers < CR are 1, 0 otherwise if (strategy > 5) st = strategy-5; % binomial crossover else st = strategy; % exponential crossover mui=sort(mui'); % transpose, collect 1's in each column for i=1:NP n=floor(rand*D); if n > 0 rtd = rem(rotd+n,D); mui(:,i) = mui(rtd+1,i); %rotate column i by n end end mui = mui'; % transpose back end mpo = mui < 0.5; % inverse mask to mui if (st == 1) % DE/best/1 ui = bm + F*(pm1 - pm2); % differential variation ui = popold.*mpo + ui.*mui; % crossover elseif (st == 2) % DE/rand/1 ui = pm3 + F*(pm1 - pm2); % differential variation ui = popold.*mpo + ui.*mui; % crossover elseif (st == 3) % DE/rand-to-best/1 ui = popold + F*(bm-popold) + F*(pm1 - pm2); ui = popold.*mpo + ui.*mui; % crossover elseif (st == 4) % DE/best/2 ui = bm + F*(pm1 - pm2 + pm3 - pm4); % differential variation ui = popold.*mpo + ui.*mui; % crossover elseif (st == 5) % DE/rand/2 ui = pm5 + F*(pm1 - pm2 + pm3 - pm4); % differential variation ui = popold.*mpo + ui.*mui; % crossover end for i=1:D tl = find(ui(:,i) < XVmin(i)); tu = find(ui(:,i) > XVmax(i)); ui(tl,i) = (XVmin(i) + pop(tl,i))/2; ui(tu,i) = (XVmax(i) + pop(tu,i))/2; end;% for i=1:length(a4)/2% k1 = a4((i-1) * 2 + 1);% k2 = a4(i * 2);% e1 = norm(pop(k1,:) - ui(k1,:)) + norm(pop(k2,:) - ui(k2,:));% e2 = norm(pop(k1,:) - ui(k2,:)) + norm(pop(k2,:) - ui(k1,:));% if (e1 < e2)% tempval = feval(fname,ui(k1,:),y); % check cost of competitor% nfeval = nfeval + 1;% if (tempval <= val(k1)) % if competitor is better than value in "cost array"% pop(k1,:) = ui(k1,:); % replace old vector with new one (for new iteration)% val(k1) = tempval; % save value in "cost array"% % %----we update bestval only in case of success to save time-----------% if (tempval < bestval) % if competitor better than the best one ever% bestval = tempval; % new best value% bestmem = ui(k1,:); % new best parameter vector ever% end% end% % tempval = feval(fname,ui(k2,:),y); % check cost of competitor% nfeval = nfeval + 1;% if (tempval <= val(k2)) % if competitor is better than value in "cost array"% pop(k2,:) = ui(k2,:); % replace old vector with new one (for new iteration)% val(k2) = tempval; % save value in "cost array"% % %----we update bestval only in case of success to save time-----------% if (tempval < bestval) % if competitor better than the best one ever% bestval = tempval; % new best value% bestmem = ui(k2,:); % new best parameter vector ever% end% end% else% tempval = feval(fname,ui(k1,:),y); % check cost of competitor% nfeval = nfeval + 1;% if (tempval <= val(k2)) % if competitor is better than value in "cost array"% pop(k2,:) = ui(k1,:); % replace old vector with new one (for new iteration)% val(k2) = tempval; % save value in "cost array"% % %----we update bestval only in case of success to save time-----------% if (tempval < bestval) % if competitor better than the best one ever% bestval = tempval; % new best value% bestmem = ui(k1,:); % new best parameter vector ever% end% end% % tempval = feval(fname,ui(k2,:),y); % check cost of competitor% nfeval = nfeval + 1;% if (tempval <= val(k1)) % if competitor is better than value in "cost array"% pop(k1,:) = ui(k2,:); % replace old vector with new one (for new iteration)% val(k1) = tempval; % save value in "cost array"% % %----we update bestval only in case of success to save time-----------% if (tempval < bestval) % if competitor better than the best one ever% bestval = tempval; % new best value% bestmem = ui(k2,:); % new best parameter vector ever% end% end% end;% end; %-----Select which vectors are allowed to enter the new population------------ for i=1:NP tempval = feval(fname,ui(i,:),y); % check cost of competitor% tempval= feval(fname, ui(i,:), ode_ind, m, u, y, x, xmask,fs,fValue); nfeval = nfeval + 1; if (tempval <= val(i)) % if competitor is better than value in "cost array" pop(i,:) = ui(i,:); % replace old vector with new one (for new iteration) val(i) = tempval; % save value in "cost array" %----we update bestval only in case of success to save time----------- if (tempval < bestval) % if competitor better than the best one ever bestval = tempval; % new best value bestmem = ui(i,:); % new best parameter vector ever end end end %---end for imember=1:NP bestmemit = bestmem; % freeze the best member of this iteration for the coming % iteration. This is needed for some of the strategies. %----Output section---------------------------------------------------------- if (refresh > 0) if (rem(iter,refresh) == 0) fprintf(1,'Iteration: %d, Best: %f, F: %f, CR: %f, NP: %d\n',iter,bestval,F,CR,NP); for n=1:D fprintf(1,'best(%d) = %f\n',n,bestmem(n)); end end end iter = iter + 1; if (FunCount >= 8e5) return; end;end %---end while ((iter < itermax) ...
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -