⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 im_profile.m

📁 模式识别工具箱。非常丰富的底层函数和常见的统计识别工具
💻 M
字号:
%IM_PROFILE Computation of horizontal and vertical image profile%%	P = IM_PROFILE(A,NX,NY)%	P = A*IM_PROFILE([],NX,NY)%% INPUT%   A        Dataset with object images dataset (possibly multi-band)%   NX       Number of bins for horizontal profile%   NY       Number of bins for vertical profile%% OUTPUT%   P        Dataset with profiles replacing images (possibly multi-band)%% DESCRIPTION% Computes for the images in A a 1*(NX+NY) vector P storing the horizontal and% vertical profile (i.e. normalized image projections) given by NX respectively% NY points. Because of the normalization holds sum(P) = 1.% The computation is based on a bilinear interpolation of A to an image of NX*NY% points. Consequently is the horizontal profile (P(1:NX)) slightly dependent% on NY and the vertical profile (P(NX+1:NX+NY)) slightly dependent on NX.% Defaults : NY = NX, NX = 16.%% SEE ALSO% DATASETS, DATAFILES% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlandsfunction b = im_profile(a,nx,ny)	prtrace(mfilename);		if nargin < 3, ny = []; end	if nargin < 2, nx = 16; end  if nargin < 1 | isempty(a)    b = mapping(mfilename,'fixed',{nx,ny});    b = setname(b,'Image profile');	elseif isa(a,'dataset') % allows datafiles too		isobjim(a);    b = filtim(a,mfilename,{nx,ny});  elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image		if isa(a,'dip_image'), a = double(a); end	  if isempty(ny)			ny = nx;		end		if any([nx,ny] < 4)			b = imresize(a,10*[ny,nx],'bilinear');			sx = sum(reshape(sum(b,1),10,nx),1);			sy = sum(reshape(sum(b,2)',10,ny),1);			s = sum(sx);			b = [sx sy]/s;		else			b = imresize(a,[ny,nx],'bilinear');			s = sum(b(:));			b = [sum(b,1) sum(b,2)']/s;		end	endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -