📄 traincc.m
字号:
%TRAINCC Train combining classifier if needed% % W = TRAINCC(A,W,CCLASSF)% % INPUT% A Training dataset% W A set of classifiers to be combined % CCLASSF Combining classifier%% OUTPUT% B Combined classifier mapping%% DESCRIPTION % The combining classifier CCLASSF is trained by the dataset A*W, if% training is needed. W is typically a set of stacked (operating in the same% feature space) or parallel (operating in different feature spaces;% performed one after another) classifiers to be combined. E.g. if V1, V2% and V3 are base classifiers, then V = [V1,V2,V3,...] is a stacked% classifier and V = [V1;V2;V3;...] is a parallel one. If CCLASSF is one of% the fixed combining rules like MAXC, then training is skipped.%% This routine is typically called by combining classifier schemes like% BAGGINGC and BOOSTINGC.%% SEE ALSO% DATASETS, MAPPINGS, STACKED, PARALLEL, BAGGINGC, BOOSTINGC% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: traincc.m,v 1.2 2006/03/08 22:06:58 duin Exp $function w = traincc(a,w,cclassf) prtrace(mfilename); if (~ismapping(cclassf)) error('Combining classifier is an unknown mapping.') end % If CCLASSF is already a combining classifier, just apply it. Otherwise, % train it using A*W. if (iscombiner(cclassf)) w = w*cclassf; else w = w*(a*w*cclassf); end w = setcost(w,a); return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -