📄 prtools.m
字号:
%parzenml Optimization of smoothing parameter in Parzen density estimation.%pca Principal Component Analysis%pcaklm Back en routine for PC and KL mappings%proxm Proximity mapping and kernel construction%reducm Reduce to minimal space mapping%remoutl Remove outliers%rejectm Creates rejecting mapping%scalem Compute scaling data%sigm Simoid mapping%spatm Augment image dataset with spatial label information%userkernel User supplied kernel definition%%gtm Fit a Generative Topographic Mapping (GTM) by EM%plotgtm Plot a Generative Topographic Mapping in 2D%som Simple routine computing a Self-Organizing Map (SOM)%plotsom Plot a Self-Organizing Map in 2D%%Classifier combiners%--------------------%averagec Combining linear classifiers by averaging coefficients%baggingc Bootstrapping and aggregation of classifiers%rsscc Random subspace combining classifier%votec Voting classifier combiner%wvotec Weighted voting classifier combiner%maxc Maximum classifier combiner%minc Minimum classifier combiner%meanc Mean classifier combiner%medianc Median classifier combiner%prodc Product classifier combiner%traincc Train combining classifier%fixedcc Fixed combiner construction, back end%parsc Parse classifier or map%rejectc Creates reject version of exisiting classifier%parallel Parallel combining of classifiers%stacked Stacked combining of classifiers%sequential Sequential combining of classifiers%%%Regression%----------%linearr Linear regression%ridger Ridge regression%lassor LASSO%svmr Support vector regression%ksmoothr Kernel smoother%knnr k-nearest neighbor regression%pinvr Pseudo-inverse regression%plsr Partial least squares regression%plsm Partial least squares mapping%%testr Mean squared regression error%rsquared R^2-statistic%%Handling images in datasets and datafiles%-----------------------------------------%data2im Convert dataset to image%getobjsize Retrieve image size of feature images in datasets%getfeatsize Retrieve image size of object images in datasets%obj2feat Transform object images to feature images in dataset%feat2obj Transform feature images to object images in dataset%im2feat Convert image to feature in dataset%im2obj Convert image to object in dataset%selectim Select image in multi-band object image dataset/datafile%show Display objects in datasets, datafiles and mappings%%Operations on images in datasets and datafiles%----------------------------------------------%classim Classify image using a given classifier%dataim Image operation on dataset images (features or objects)%doublem Convert datafile images into double%filtim Image operation on objects in datafiles/datasets%datfilt Filter dataset image (outdated)%datgauss Filter dataset image by Gaussian filter%datunif Filter dataset image by uniform filter%hsv2rgb Convert HSV to RGB images%rgb2hsv Convert RGB to HSV images%spatm Augment image dataset with spatial label information%im_bdilation Binary dilation%im_berosion Binary erosion%im_box Bounding box%im_bpropagation Binary propagation%im_center Center image%im_fft FFT transform (and more)%im_gaussf Gaussian filtering%im_gray Multi-band to gray-value conversion%im_hist_equalize Histogram equalization%im_invert Invert image%im_label Labeling binary images%im_maxf Maximum filter%im_minf Minimum filter%im_resize Resize images%im_rotate Rotate images%im_scale Scale iamges%im_select_blob Select largest blob%im_stretch Contrast stretching of images%im_threshold Threshold images%%Feature extraction from images in datasets and datafiles%--------------------------------------------------------%histm Convert images to histograms%im_moments Computes moments as features from object images%im_mean Computes center of gravity%im_measure Computes some measurements%im_profile Computes image profiles%im_stat Compute some simple statistics%%Clustering and distances%------------------------%distm Distance matrix between two data sets.%emclust Expectation - maximization clustering%proxm Proximity mapping and kernel construction%hclust Hierarchical clustering%kcentres k-centres clustering%kmeans k-means clustering%modeseek Clustering by modeseeking%%mds Non-linear mapping by multi-dimensional scaling (Sammon)%mds_cs Linear mapping by classical scaling%mds_init Initialisation of multi-dimensional scaling%mds_stress Dissimilarity of distance matrices%%Plotting%--------%gridsize Set gridsize used in the PRTools plot commands%plotc Plot discriminant function for two features%plote Plot error curves%plotf Plot feature distribution%plotm Plot mapping%ploto Plot object functions%plotr Plot regression functions%plotdg Plot dendrgram (see hclust)%scatterd Scatterplot%scatterdui Scatterplot scatterplot with feature selection%scatterr Scatter regression dataset%%Various tests and support routines%----------------------------------%cdats Support routine for checking datasets%iscolumn Test on column array%iscomdset Test on compatible datasets%isdataim Test on image dataset%isdataset Test on dataset%isfeatim Test on feature image dataset%ismapping Test on mapping%isobjim Test on object image dataset%isparallel Test on parallel mapping%isstacked Test on stacked mapping%issym.m Test on symmetric matrix%isvaldset Test on valid dataset%isvaldfile Test on valid datafile%matchlablist Match entries of label lists%newfig Control of figures on the screen%newline Generate a new line in the command window%labcmp Compare two label lists and find the differences%nlabcmp Compare two label lists and count the differences%testdatasize Check datasize and convert datafile to dataset%%Examples%--------%prex_cleval learning curves%prex_combining classifier combining%prex_confmat confusion matrix, scatterplot and gridsize%prex_datafile datafile usage%prex_datasets standard datasets%prex_density Various density plots%prex_eigenfaces Use of images and eigenfaces%prex_matchlab K-means clustering and matching labels%prex_mcplot Multi-class classifier plot%prex_plotc Dataset scatter and classifier plot%prex_som Training a SelfOrganizing Maps%prex_spatm Spatial smoothing of image classification%prex_cost Cost matrices and rejection%prex_logdens Density based classifier improvement%prex_regr Regression example%%prversion returns version information on PRTools%prprogress report progress control%prwarning control PRTools warning level%prmemory controol PRTools large dataset handling%prtver prtools version back end%typp list prtools routine nicely% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -