📄 prtools.m
字号:
% Pattern Recognition Tools% Version 4.1.3 10-Jun-2008%%Datasets and Mappings (just most important routines)%---------------------%dataset Define dataset from datamatrix and labels%datasets List information on datasets (just help, no command)%datafile Define dataset from directory of object files %datafiles List information on datafiles (just help, no command)%classsizes Retrieve sizes of classes%gencirc Generation of a one-class circular dataset%genclass Generate class frequency distribution%genlab Generate dataset labels%getlab Retrieve object labels from datasets and mappings%getnlab Retrieve nummeric object labels from dataset%getfeat Retrieve feature labels from datasets and mappings%get Get fields from datasets or mappings%setdata Change data in dataset%setlabels Change labels of dataset or mapping%addlabels Add additional labelling%changelablist Change current active labeling%multi_labeling List information on multi-labeling (help only)%mapping Define and retrieve mapping and classifier from data%mappings List information on mappings (just help, no command)%renumlab Convert labels to numbers%matchlab Match different labelings%primport Convert old datasets to present PRTools definition%remclass Remove a class from a dataset%seldat Retrieve part of a dataset%%Data Generation (more in prdatasets)%---------------%circles3d Create a dataset containing 2 circles in 3 dimensions%lines5d Create a dataset containing 3 lines in 5 dimensions%gauss Generation of multivariate Gaussian distributed data%gendat Generation of classes from given data set%gendatb Generation of banana shaped classes%gendatc Generation of circular classes%gendatd Generation of two difficult classes%gendath Generation of Highleyman classes%gendati Generation of random windows from images%gendatk Nearest neighbour data generation%gendatl Generation of Lithuanian classes%gendatm Generation of 8 2d classes%gendatp Parzen density data generation%gendatr Generate regression dataset from data and target values%gendats Generation of two Gaussian distributed classes%gendatw Sample dataset by given weigths%gentrunk Generation of Trunk's example%prdata Read data from file%seldat Select classes / features / objects from dataset%getwindows Get pixel feature vectors around given pixels in image dataset%prdataset Read existing dataset from file%prdatasets Overview of all datasets and data generators%%Datafiles%---------%datafile Define datafile from set of files in directory%savedatafile Save datafile, store intermediate result%filtm Mapping for arbitrary processing of datafile%%Linear and Quadratic Classifiers (*operate on datasets and datafiles)%--------------------------------%fisherc Minimum least square linear classifier%ldc Normal densities based linear (muli-class) classifier%loglc Logistic linear classifier%nmc Nearest mean linear classifier%nmsc Scaled nearest mean linear classifier%quadrc Quadratic classifier%qdc Normal densities based quadratic (multi-class) classifier%udc Uncorrelated normal densities based quadratic classifier%klldc Linear classifier based on KL expansion of common cov matrix%pcldc Linear classifier based on PCA expansion on the joint data%polyc Add polynomial features and run arbitrary classifier%subsc Subspace classifier% %classc Converts a mapping into a classifier%labeld Find labels of objects by classification%logdens Convert density estimates to log-densities for more accuracy%rejectc Creates reject version of exisiting classifier%testc General error estimation routine for trained classifiers%%Other Classifiers %-----------------%knnc k-nearest neighbour classifier (find k, build classifier)%knn_map Map a dataset on a K-NN classifier, back end routine%testk Error estimation for k-nearest neighbour rule%edicon Edit and condense training sets%%weakc Weak classifier%stumpc Decision stump classifier%adaboostc ADABoost classifier%%parzenc Parzen classifier%parzendc Parzen density based classifier%parzen_map Map a dataset on a Parzen classfier, back end routine%testp Error estimation for Parzen classifier%%treec Construct binary decision tree classifier%tree_map Map a dataset on a decision tree, back end routine%naivebc Naive Bayes classifier%bpxnc Feed forward neural network classifier by backpropagation%lmnc Feed forward neural network by Levenberg-Marquardt rule%neurc Automatic neural network classifier%perlc Linear perceptron %rbnc Radial basis neural network classifier%rnnc Random neural network classifier%ffnc Feed-forward neural net classifier back-end routine%%fdsc Feature based dissimilarity space classifier%%svc Support vector classifier%svo Support vector optimizer%nusvc Support vector classifier%nusvo Support vector optimizer%rbsvc Radial basis SV classifier%kernelc General kernel/dissimilarity based classification%%Normal Density Based Classification%-----------------------------------%distmaha Mahalanobis distance%meancov Estimation of means and covariance matrices from multiclass data%nbayesc Bayes classifier for given normal densities%normal_map Back-end routine for computing normal densities%ldc Normal densities based linear (muli-class) classifier%qdc Normal densities based quadratic (multi-class) classifier%udc Uncorrelated normal densities based quadratic classifier%mogc Mixture of gaussians classification%testn Error estimate of discriminant on normal distributions%%Feature Selection%-----------------%feateval Evaluation of a feature set%featrank Ranking of individual feature permormances%featsel Feature Selection%featselb Backward feature selection%featself Forward feature selection%featsellr Plus-l-takeaway-r feature selection%featseli Feature selection on individual performance%featselm Feature selection map, general routine for feature selection%featselo Branch and bound feature selection%featselp Floating forward feature selection%%Classifiers and tests (general)%-------------------------------%bayesc Bayes classifier by combining density estimates%classim Classify image using a given classifier%classc Convert mapping to classifier%labeld Find labels of objects by classification%cleval Classifier evaluation (learning curve)%clevalb Classifier evaluation (learning curve), bootstrap version%clevalf Classifier evaluation (feature size curve)%clevals Classifier evaluation (feature /learning curve), bootstrap%confmat Computation of confusion matrix%costm Cost mapping, classification using costs%crossval Crossvalidation %cnormc Normalisation of classifiers%disperror Display error matrix with information on classifiers and datasets%labelim Construct image of labeled pixels%logdens Convert density estimates to log-densities for more accuracy%mclassc Computation of multi-class classifier from 2-class discriminants%regoptc Optimisation of regularisation and complexity parameters%reject Compute error-reject trade-off curve%roc Receiver-operator curve (ROC)%testc General error estimation routine for trained classifiers%testauc Estimate error as area under the ROC%%Mappings%--------%affine Construct affine (linear) mapping from parameters%bhatm Two-class Bhattacharryya mapping%cmapm Compute some special maps%featselm Feature selection map, general routine for feature selection%fisherm Fisher mapping%invsigm Inverse sigmoid map%filtm Arbitrary operation on objects in datafiles/datasets%gaussm Mixture of Gaussians density estimation%kernelm Kernel mapping%klm Decorrelation and Karhunen Loeve mapping (PCA)%klms Scaled version of klm, useful for prewhitening%knnm k-Nearest neighbor density estimation%mclassm Computation of mapping from multi-class dataset%map General routine for computing and executing mappings%nlfisherm Nonlinear Fisher mapping%normm Object normalization map%parzenm Parzen density estimation
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -