📄 nu_svr.m
字号:
%NU_SVR Support Vector Classifier: NU algorithm% % [W,J,C] = NU_SVR(A,TYPE,PAR,C,SVR_TYPE,NU_EPS,MC,PD)%% INPUT% A Dataset% TYPE Type of the kernel (optional; default: 'p')% PAR Kernel parameter (optional; default: 1)% C Regularization parameter (0 < C < 1): expected fraction of SV% (optional; default: 0.25)% SVR_TYPE This type can be 'nu' or 'epsilon'% NU_EPS The corresponding value for NU or epsilon% MC Do or do not data mean-centering (optional; default: 1 (to do))% PD Do or do not the check of the positive definiteness (optional;% default: 1 (to do))%% OUTPUT% W Mapping: Support Vector Classifier% J Object identifiers of support objects % C Equivalent C regularization parameter of SVM-C algorithm%% DESCRIPTION% Optimizes a support vector classifier for the dataset A by % quadratic programming. The classifier can be of one of the types % as defined by PROXM. Default is linear (TYPE = 'p', PAR = 1). In J % the identifiers of the support objects in A are returned.%% C belogs to the interval (0,1). C close to 1 allows for more class% overlap. Default C = 0.25.% % C is bounded from above by NU_MAX = (1 - ABS(Lp-Lm)/(Lp+Lm)), where% Lp (Lm) is the number of positive (negative) samples. If NU > NU_MAX% is supplied to the routine it will be changed to the NU_MAX.%% If C is less than some NU_MIN which depends on the overlap between% classes algorithm will typically take long time to converge (if at% all). So, it is advisable to set NU larger than expected overlap.%% Output is rescaled in a such manner as if it were returned by SVC with% the parameter C.%%% SEE ALSO% NU_SVRO, SVO, SVC, MAPPINGS, DATASETS, PROXM% Copyright: S.Verzakov, s.verzakov@ewi.tudelft.nl % Based on SVC.M by D.M.J. Tax, D. de Ridder, R.P.W. Duin% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: nu_svr.m,v 1.1 2007/08/28 10:59:22 davidt Exp $function [W, J, epsilon_or_nu] = nu_svcr(a,type,par,C,svr_type,nu_or_epsilon,mc,pd)prtrace(mfilename);if nargin < 2 | ~isa(type,'mapping') if nargin < 8 pd = 1; end if nargin < 7 mc = 1; end if nargin < 6 nu_or_epsilon = []; end if nargin < 5 | isempty(svr_type) svr_type = 'epsilon'; end switch svr_type case 'nu' if isempty(nu_or_epsilon) prwarning(3,'nu is not specified, assuming 0.25.'); nu_or_epsilon = 0.25; end %nu = nu_or_epsilon; case {'eps', 'epsilon'} svr_type = 'epsilon'; if isempty(nu_or_epsilon) prwarning(3,'epsilon is not specified, assuming 1e-2.'); nu_or_epsilon = 1e-2; end %epsilon = nu_or_epsilon; end if nargin < 4 | isempty(C) prwarning(3,'C set to 1\n'); C = 1; end if nargin < 3 | isempty(par) par = 1; prwarning(3,'Kernel parameter par set to 1\n'); end if nargin < 2 | isempty(type) type = 'p'; prwarning(3,'Polynomial kernel type is used\n'); end if nargin < 1 | isempty(a) W = mapping(mfilename,{type,par,C,svr_type,nu_or_epsilon,mc,pd}); W = setname(W,['Support Vector Regression (' svr_type ' algorithm)']); return; end islabtype(a,'targets'); [m,k] = getsize(a); y = gettargets(a); % The 1-dim SVR if size(y,2) == 1 % 1-dim regression uy = mean(y); y = y - uy; if mc u = mean(a); a = a - ones(m,1)*u; else u = []; end K = a*proxm(a,type,par); % Perform the optimization: [v,J,epsilon_or_nu] = nu_svro(+K,y,C,svr_type,nu_or_epsilon,pd); % Store the results: v(end) = v(end)+uy; W = mapping(mfilename,'trained',{u,a(J,:),v,type,par},getlablist(a),k,1); W = setname(W,['Support Vector Regression (' svr_type ' algorithm)']); W = setcost(W,a); J = a.ident(J); else error('multivariate SVR is not supported'); endelse % execution w = +type; m = size(a,1); % The first parameter w{1} stores the mean of the dataset. When it % is supplied, remove it from the dataset to improve the numerical % precision. Then compute the kernel matrix using proxm. if isempty(w{1}) d = a*proxm(w{2},w{4},w{5}); else d = (a-ones(m,1)*w{1})*proxm(w{2},w{4},w{5}); end % When Data is mapped by the kernel, now we just have a linear % regression w*x+b: d = [d ones(m,1)] * w{3}; W = setdat(a,d,type);end return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -