📄 udc.m
字号:
%UDC Uncorrelated normal based quadratic Bayes classifier (BayesNormal_U)% % W = UDC(A)% W = A*UDC% % INPUT% A input dataset%% OUTPUT% W output mapping%% DESCRIPTION% Computation a quadratic classifier between the classes in the % dataset A assuming normal densities with uncorrelated features.%% The use of probabilistic labels is supported. The classification A*W is% computed by normal_map.% % EXAMPLES% PREX_DENSITY%% SEE ALSO% MAPPINGS, DATASETS, NMC, NMSC, LDC, QDC, QUADRC, NORMAL_MAP% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: udc.m,v 1.6 2007/06/05 12:45:44 duin Exp $function W = udc(a) prtrace(mfilename); if nargin == 0 W = mapping(mfilename); W = setname(W,'Bayes-Normal-U'); return end islabtype(a,'crisp','soft'); isvaldfile(a,2,2); % at least 2 objects per class, 2 classes [m,k,c] = getsize(a); [U,G] = meancov(a); %computing mean and covariance matrix p = getprior(a); for j = 1:c G(:,:,j) = diag(diag(G(:,:,j))); end w.mean = +U; w.cov = G; w.prior = p; %W = mapping('normal_map','trained',w,getlab(U),k,c); W = normal_map(w,getlab(U),k,c); W = setname(W,'Bayes-Normal-U'); W = setcost(W,a);return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -