⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dist1.m

📁 compute pca for face detection by matlab
💻 M
字号:
% clear all ; 
load eigenvector u ;
% load eigenvalue ev ;
load mean mn ;
% load projected proj ;
% load curves X ;
% test = [-0.333333e-001 1.000000e+000 -1.242424e-001 0.484848e-001 -2.545455e-001 2.969697e-001 -9.939394e-001 1.454545e-001 -1.333333e-001 8.939394e-001 -0.727273e-001 1.424242e-001 -8.818182e-001 9.090909e-002 0.000000e+000 0.000000e+000 2.121212e-001 2.090909e-002 2.333333e-001 2.424242e-001 1.545455e-001 3.939394e-001 0.848485e-001 0.454545e-001 4.848485e-001 6.969697e-001 4.242424e-001 8.484848e-001 2.727273e-001 1.000000e+000 2.500000e-001 7.500000e-001 5.000000e-001 2.500000e-001 5.000000e-001 2.500000e-001 2.500000e-001 5.000000e-001 7.500000e-001 5.000000e-001 7.500000e-001 5.000000e-001 5.000000e-001 2.500000e-001 7.500000e-001 ]';
% test = [-0.333333e-001 1.000000e+000 -9.242424e-001 0.484848e-001 -4.545455e-001 6.969697e-001 -3.939394e-001 1.454545e-001 -3.333333e-001 2.939394e-001 -2.727273e-001 2.424242e-001 -1.818182e-001 9.090909e-002 0.000000e+000 0.000000e+000 8.121212e-001 9.090909e-002 0.333333e-001 2.424242e-001 1.545455e-001 3.939394e-001 4.848485e-001 0.454545e-001 4.848485e-001 6.969697e-001 4.242424e-001 0.484848e-001 9.727273e-001 1.000000e+000 2.500000e-001 7.500000e-001 5.000000e-001 2.500000e-001 5.000000e-001 2.500000e-001 2.500000e-001 5.000000e-001 7.500000e-001 5.000000e-001 7.500000e-001 5.000000e-001 5.000000e-001 2.500000e-001 7.500000e-001 ]';
% test = [-3.333333e-001 1.000000e+000 -4.242424e-001 8.484848e-001 -4.545455e-001 6.969697e-001 -3.939394e-001 5.454545e-001 -3.333333e-001 3.939394e-001 -2.727273e-001 2.424242e-001 -1.818182e-001 9.090909e-002 0.000000e+000 0.000000e+000 2.121212e-001 9.090909e-002 3.333333e-001 2.424242e-001 4.545455e-001 3.939394e-001 4.848485e-001 5.454545e-001 4.848485e-001 6.969697e-001 4.242424e-001 8.484848e-001 2.727273e-001 1.000000e+000 1.500000e-001 7.500000e-001 0.000000e-001 7.500000e-001 4.000000e-001 7.500000e-001 2.500000e-001 4.000000e-001 2.500000e-001 1.000000e-001 9.500000e-001 0.000000e-001 1.000000e-001 9.500000e-001 0.500000e-001 ]';
% test = [-3.333333e-001 1.000000e+000 -4.242424e-001 8.484848e-001 -4.545455e-001 6.969697e-001 -3.939394e-001 5.454545e-001 -3.333333e-001 3.939394e-001 -2.727273e-001 2.424242e-001 -1.818182e-001 9.090909e-002 0.000000e+000 0.000000e+000 2.121212e-001 9.090909e-002 3.333333e-001 2.424242e-001 4.545455e-001 3.939394e-001 4.848485e-001 5.454545e-001 4.848485e-001 6.969697e-001 4.242424e-001 8.484848e-001 2.727273e-001 1.000000e+000 2.500000e-001 7.500000e-001 5.000000e-001 2.500000e-001 5.000000e-001 2.500000e-001 2.500000e-001 5.000000e-001 7.500000e-001 5.000000e-001 7.500000e-001 5.000000e-001 5.000000e-001 2.500000e-001 7.500000e-001 ]';
% test = [2.500000e-001 7.500000e-001 5.000000e-001 2.500000e-001 5.000000e-001 2.500000e-001 2.500000e-001 5.000000e-001 7.500000e-001 5.000000e-001 7.500000e-001 5.000000e-001 5.000000e-001 2.500000e-001 7.500000e-001 ]';
% test = [0.500000e-001 0.500000e-001 1.000000e-001 9.500000e-001 5.000000e-001 2.500000e-001 2.500000e-001 1.000000e-001 2.500000e-001 1.000000e-001 0.500000e-001 1.000000e-001 9.000000e-001 8.500000e-001 0.500000e-001 ]';
% test = [34 12 34 56 78 12 13 56 12 89 34 190 24 0 17 367 89 134 567 23 120 56 134 169 90 45 12 14 38 11]';
% dist=[] ;
% [d,s] = size(X) ;
% for i=1:s
%    test = X(:,i) - mn;

test = XX(1,:)';

test = test-mn;
   y = u'*test;
   eps_sqr = (norm(test)^2) - sum(y.^2)
%    dist(i) = eps_sqr   ;   % distance from feature space
% end


% X= [34 12 34 56 78 12 13 56 12 89 34 190 24 0 17 367 89 134 567 23 120 56 134 169 90 45 12 14 38 11]';
% featureNumber = size(u,1);
% vectorNumber = size(u,2);
% Map = zeros(vectorNumber,1);
% Norm = 0;
% Sum =0;
% 
% for i=1:featureNumber
%    X(i) = X(i) - mn(i);
% end;
% 
% for j=1:vectorNumber
%     for i=1:featureNumber
%         Map(j) = Map(j) + u(i,j) * X(i);
% end;end;
% for i=1:featureNumber
%    Norm = Norm + X(i)^2;
% end;
% for j=1:vectorNumber
%    Sum = Sum + Map(j)^2;
% end;
% Distance = Norm - Sum   % distance from feature space

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -