📄 scalfn.m
字号:
function [s,t] = scalfn(h,J)% [s,t] = scalfn(h,J);% Scaling function obtained by dyadic expansion% input% h : scaling filter (must have even length)% output% s : samples of the scaling function phi(t)% for t = k/2^J, k=0,1,2,...% example:% h = daub(6);% [s,t] = scalfn(h);% plot(t,s)if nargin < 2 J = 5;endN = length(h);h = h(:).'; % form a row vector% h = h*sqrt(2)/sum(h); % normalize: sum(h) = sqrt(2)% check that sum(h(2n)) = sum(h(2n+1))if abs(sum(h(1:2:N))-sum(h(2:2:N))) > 0.0001 disp(' need: sum(h(2n)) = sum(h(2n+1))') returnendH = convmtx(h(:),N);M = sqrt(2)*H(1:2:2*N-1,:);Q = M - eye(N);Q(N,:) = ones(1,N);s = Q \ [zeros(N-1,1); 1];% s = [Q; ones(1,N)] \ [zeros(N,1); 1];s = s.'; % phi at integersL = N; % length of phi vectorfor k = 0:J-1 s = sqrt(2)*conv(h,s); L = 2*L-1; s = s(1:L); h = up(h,2);endt = (0:L-1)*(N-1)/(L-1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -