⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 w4运动检测06-09-18.cpp

📁 此程序是针对视频中的运动目标的检测
💻 CPP
📖 第 1 页 / 共 2 页
字号:
/************************************************** * 背景建模,运动物体检测 *       **************************************************/#ifdef _CH_
#pragma package <opencv>
#endif

#ifndef _EiC
#include <stdio.h>#include <cv.h>#include <cxcore.h>#include <highgui.h>
#include <ctype.h>
#endif
#define FALSE 0
#define TRUE  1
#define EPS	1e-6
#define	SQUARE(x)	((x) * (x))
#define ZERO(x)		(fabs((x)) < EPS ? TRUE : FALSE)
#define LearnFrame 20    
#define NUM  20
#define PARAMETER 2
IplConvKernel* element = 0;

const int element_shape = CV_SHAPE_RECT;
//形态学滤波函数操作
void Opening(IplImage* src, IplImage* image, IplImage* dest, int pos);   
void Closing(IplImage* src, IplImage* image, IplImage* dest, int pos); 
void Erosion(IplImage* src, IplImage* dest, int pos);
void Dilation(IplImage* src, IplImage* dest, int pos);  

CvMemStorage* storage = 0; // temporary storage

int i;
CvPoint pt;
CvPoint pre_pt;
int N;

int main(  ){  //声明当前帧IplImage指针  IplImage* pFrame = NULL;   IplImage* pFrImg = NULL;  IplImage* pBkImg = NULL;
  IplImage* pCurImg = NULL;
  IplImage* pTempImg = NULL;  CvMat* MinValue = NULL;
  CvMat* MaxValue = NULL;
  CvMat* MaxFrameDiff = NULL;
  CvMat* MeanValue = NULL;
  CvMat* SigmaValue = NULL;
  CvMat* MedianFrameDiff = NULL;
  //运动参数矩阵
  CvMat* gS = NULL;
  CvMat* mS = NULL;
  CvMat* hS = NULL;

  IplImage** buf = NULL;
  
  CvCapture* Capture = NULL;    int nFrmNum = 0;
  int thresh=0;
  int sum=0;   
  int alert=0;
  int i,j,w,x;
  double temp[NUM];
  double temp1[NUM];
  double tmp;
  int countframe=0;
  
  #define MinValueMat(ROW,COL) ((uchar *)(MinValue->data.ptr + MinValue->step *(ROW)))[(COL)]
  #define MaxValueMat(ROW,COL) ((uchar *)(MaxValue->data.ptr + MaxValue->step *(ROW)))[(COL)]
  #define MaxFrameDiffMat(ROW,COL) ((uchar *)(MaxFrameDiff->data.ptr + MaxFrameDiff->step *(ROW)))[(COL)]
  #define MedianFrameDiffMat(ROW,COL) ((uchar *)(MedianFrameDiff->data.ptr + MedianFrameDiff->step *(ROW)))[(COL)]

  #define MeanValueMat(ROW,COL) ((float *)(MeanValue->data.fl + MeanValue->step/sizeof(float) *(ROW)))[(COL)]
  #define SigmaValueMat(ROW,COL) ((float *)(SigmaValue->data.fl + SigmaValue->step/sizeof(float) *(ROW)))[(COL)]

  #define BufMAT(NUMBER,ROW,COL) ((uchar*)(buf[(NUMBER)]->imageData + buf[(NUMBER)]->widthStep*(ROW)))[(COL)]
  
  #define gSMat(ROW,COL) ((uchar *)(gS->data.ptr + gS->step *(ROW)))[(COL)]
  #define mSMat(ROW,COL) ((uchar *)(mS->data.ptr + mS->step *(ROW)))[(COL)]
  #define hSMat(ROW,COL) ((uchar *)(hS->data.ptr + hS->step *(ROW)))[(COL)]

  #define BkImg(ROW,COL) ((uchar*)(pBkImg->imageData + pBkImg->widthStep*(ROW)))[(COL)]
  #define FrImg(ROW,COL) ((uchar*)(pFrImg->imageData + pFrImg->widthStep*(ROW)))[(COL)]
  #define TempImg(ROW,COL) ((uchar*)(pTempImg->imageData + pTempImg->widthStep*(ROW)))[(COL)]
  #define CurImg(ROW,COL) ((uchar*)(pCurImg->imageData + pCurImg->widthStep*(ROW)))[(COL)]
  
  //创建窗口  cvNamedWindow("video", 2);  cvNamedWindow("back",2);  cvNamedWindow("fore",2);
  cvNamedWindow("temp",2);
  //  Capture =cvCaptureFromCAM(0);
  Capture = cvCaptureFromFile("I:\\经典运动检测\\99.avi");  pFrame = cvQueryFrame( Capture );
  
  //使窗口有序排列
  cvMoveWindow("video", 30, 20);
  cvMoveWindow("back", 50+2*pFrame->width, 20);
  cvMoveWindow("fore", 30, 110+2*pFrame->height);
  cvMoveWindow("temp", 50+2*pFrame->width, 110+2*pFrame->height);

  //申请内存,并初始化
  //背景、前景、临时图像
  pBkImg = cvCreateImage(cvSize(pFrame->width, pFrame->height),  IPL_DEPTH_8U,1);
  pFrImg = cvCreateImage(cvSize(pFrame->width, pFrame->height),  IPL_DEPTH_8U,1);
  pTempImg = cvCreateImage(cvSize(pFrame->width, pFrame->height),  IPL_DEPTH_8U,1);
  pCurImg = cvCreateImage(cvSize(pFrame->width, pFrame->height),  IPL_DEPTH_8U,1);
  //均值矩阵,最大值矩阵、最小值矩阵、最大相邻帧差
  MinValue = cvCreateMat(pFrame->height, pFrame->width, CV_8UC1);
  MaxValue = cvCreateMat(pFrame->height, pFrame->width, CV_8UC1);
  MaxFrameDiff = cvCreateMat(pFrame->height, pFrame->width, CV_8UC1);
  MedianFrameDiff= cvCreateMat(pFrame->height, pFrame->width, CV_8UC1);

  gS = cvCreateMat(pFrame->height, pFrame->width, CV_8UC1);
  mS = cvCreateMat(pFrame->height, pFrame->width, CV_8UC1);
  hS = cvCreateMat(pFrame->height, pFrame->width, CV_8UC1);
    
  cvZero(MinValue);cvZero(MaxValue);cvZero(MaxFrameDiff);
  cvZero(gS);cvZero(mS);cvZero(hS);
  
  //均值矩阵、方差矩阵
  MeanValue = cvCreateMat(pFrame->height, pFrame->width, CV_32FC1);
  SigmaValue = cvCreateMat(pFrame->height, pFrame->width, CV_32FC1);
  cvZero(MeanValue);cvZero(SigmaValue);

  //初始化时使用的NUM帧数据
  buf = (IplImage**)malloc(NUM*sizeof(buf[0]));
  memset( buf, 0, NUM * sizeof(buf[0]) );
  for( i = 0; i < NUM; i++ ) 
  {
      buf[i] = cvCreateImage(cvSize(pFrame->width, pFrame->height),  IPL_DEPTH_8U,1);
      cvZero( buf[i] );
  }

  storage = cvCreateMemStorage(0);
	        //逐帧读取视频  while(pFrame = cvQueryFrame( Capture ))  {            if(countframe<0)
	  {
		  countframe++;
		  continue;
	  }            if(nFrmNum<LearnFrame)//背景模型初始化	  {	      
	      //转化成单通道图像再处理	      cvCvtColor(pFrame, pTempImg, CV_BGR2GRAY);
	      //中值滤波 
          cvSmooth( pTempImg, pCurImg, CV_MEDIAN , 3, 0, 0 );//CV_GAUSSIAN or CV_MEDIAN
	
          cvFlip( pCurImg, pCurImg, 0 );
		  cvCopy( pCurImg, buf[nFrmNum], 0 );
		  nFrmNum++;
		  printf("frame= %d \n",nFrmNum);
	      continue;	  }
	  else if (nFrmNum==LearnFrame)   //建立 W4 背景模型
	  {
		  nFrmNum++;
		  cvCvtColor(pFrame, pTempImg, CV_BGR2GRAY);
		  cvFlip( pTempImg, pTempImg, 0 );
	      //中值滤波 
          cvSmooth( pTempImg, pCurImg, CV_MEDIAN , 3, 0, 0 );//CV_GAUSSIAN or CV_MEDIAN
          for (w = 1; w < NUM; w++)
              cvCopy( buf[w], buf[w-1], 0 );
          cvCopy( pCurImg, buf[NUM-1], 0 );

		  for ( i = 0; i < pFrame->height; i++)
		  {
		     for ( j = 0; j < pFrame->width; j++)
			 {   
				 double temp_deviation[NUM];
				 temp[0] = BufMAT(0,i,j);
				 //临时存储
				 for ( w = 1; w < NUM; w++)
				 {
				    temp[w] = BufMAT(w,i,j);
					temp_deviation[w-1] = abs(temp[w]-temp[w-1]);      //临时离差
				 }
                 //排序取其数据的中值
				 for (w = 0; w < NUM; w++)
				 {
				    for ( x = 0; x < NUM - w - 1; x++)
					{
					    if (temp[x] > temp[x + 1])
						 {
						    tmp = temp[x];
						    temp[x] = temp[x + 1];
						    temp[x + 1] = tmp;
						}
					}
				 }
				 //对离差进行排序
				 for (w = 0; w < NUM-1; w++)
				 {
				    for ( x = 0; x < NUM - w - 2; x++)
					{
						if (temp_deviation[x] > temp_deviation[x + 1])
						 {
						    tmp = temp_deviation[x];
						    temp_deviation[x] = temp_deviation[x + 1];
						    temp_deviation[x + 1] = tmp;
						}
					}
				 }
			     //得到中值数,以及中值离差,利用中值滤波,剔除非背景点
			     tmp = temp[NUM / 2];
			     int tindex = 0;
			     for (w = 0; w < NUM; w++)
				 {
				    if (abs(BufMAT(w,i,j) - tmp) < 4 * temp_deviation[(NUM-1)/2])
					{
					    temp[tindex] = BufMAT(w,i,j);
					    tindex++;
					}
				 }
				 //重新计算前景参数
				 double max_deviation = 0.0;    //最大离差
				 double median_deviation= 0.0;  //中值离差
				 double mean = 0.0;             //均值
				 mean=temp[0];
				 for ( w = 1; w < tindex-1; w++)
				 {
				    tmp=temp[w]-temp[w-1];
					if (max_deviation<tmp)
					{
                        max_deviation=tmp;
					}
					temp_deviation[w] = abs( temp[w] - temp[w-1] );
					mean += 1.0*( temp[w] - mean) / (w+1);
				 }
				 double variance=0.0;            //标准方差
				 for (w = 0; w < tindex-1; w++)
				 {
				      tmp = (temp[w] - mean);
                      variance += (tmp * tmp - variance) / (w + 1);
				 }
				 variance=sqrt(1.0 * variance * (tindex-1)/ (tindex-2) );
				 
				 //背景排序求中值,最大值最小值等
			     for (w = 0; w < tindex; w++)
				 {
				    for (int x = 0; x < tindex - w - 1; x++)
					{
					    if (temp[x] > temp[x + 1])
						{
						    tmp = temp[x];
						    temp[x] = temp[x + 1];
						    temp[x + 1] = tmp;
						}
					}
				 }
				 //对背景离差进行排序,取其中值
				 for (w = 0; w < tindex-1; w++)
				 {
				    for ( x = 0; x < tindex - w - 2; x++)
					{
						if (temp_deviation[x] > temp_deviation[x + 1])
						 {
						    tmp = temp_deviation[x];
						    temp_deviation[x] = temp_deviation[x + 1];
						    temp_deviation[x + 1] = tmp;
						}
					}
				 }
		         int ttindex= (tindex-1)/2;
				 
				 if(temp_deviation[(tindex-2)/2]<PARAMETER)
				 {
                     temp_deviation[(tindex-2)/2]=PARAMETER;
				 }
				 if (variance<PARAMETER)
				 {
					 variance=PARAMETER;
				 }
				 if (max_deviation<PARAMETER)
				 {
                     max_deviation=PARAMETER;
				 }
				 //背景参数
			     MinValueMat(i,j) = temp[0];                             //最小值
			     MaxValueMat(i,j) = temp[tindex - 1];                    //最大值
		      	 MaxFrameDiffMat(i,j) = max_deviation;                   //相邻帧最大差
				 MedianFrameDiffMat(i,j) = temp_deviation[(tindex-2)/2]; //相邻帧差的中值
			     SigmaValueMat(i,j) = variance;                          //标准方差	
			     MeanValueMat(i,j) = mean;                               //均值
			     BkImg(i,j)=temp[ttindex];                               //背景值
             }
		  }
		  printf("initialization ofbackground model is completed!\n");
	  }      else        //背景减并进行背景更新
	  {       
		  countframe++;
		  printf(" The current frame is %d ; \n",countframe);
		  //提取前景目标
		  cvCvtColor(pFrame, pTempImg, CV_BGR2GRAY);
		  cvFlip( pTempImg, pTempImg, 0 );
	      //中值滤波 
          cvSmooth( pTempImg, pCurImg, CV_MEDIAN , 3, 0, 0 );//CV_GAUSSIAN or CV_MEDIAN  	      	   
/*
		  cvConvert(Cur_Frame, pFrameMat);

	      cvAbsDiff( pFrameMat, MinValue, pSubMat1 );  
		  cvCmp( pSubMat1, MaxFrameDiff, pSubMat1, CV_CMP_LE   );
		  cvAbsDiff( pFrameMat, MaxValue, pSubMat2 );  
		  cvCmp( pSubMat2, MaxFrameDiff, pSubMat2, CV_CMP_LE   );
          //确定前景背景
		  cvOr( pSubMat1, pSubMat2, pFrMat, 0 );

		  cvAnd( pFrameMat, pFrMat, pFrImg, pFrMat );
 
		  cvConvert(pBkMat, pBkImg);
		  cvConvert(pFrMat, pTempImg);
		  
		  cvShowImage("background", pBkImg);  //显示背景图像
	      cvShowImage("foreground", pFrImg);  //显示前景图像
          cvShowImage("temp", pTempImg);      //显示二值前景图像
*/		  //%%%%%%%%%%%%%%%%%%%%%%%
   /*     计算相关的运动参数矩阵
		  //a detection support map(gS) matrix
          cvAddS( gS, cvScalarAll( 1 ) , gS, pBkMat );
          //a motion support map(mS) matrix

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -