📄 libfann.py
字号:
# This file was created automatically by SWIG.
# Don't modify this file, modify the SWIG interface instead.
# This file is compatible with both classic and new-style classes.
import _libfann
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
if (name == "this"):
if isinstance(value, class_type):
self.__dict__[name] = value.this
if hasattr(value,"thisown"): self.__dict__["thisown"] = value.thisown
del value.thisown
return
method = class_type.__swig_setmethods__.get(name,None)
if method: return method(self,value)
if (not static) or hasattr(self,name) or (name == "thisown"):
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self,class_type,name,value):
return _swig_setattr_nondynamic(self,class_type,name,value,0)
def _swig_getattr(self,class_type,name):
method = class_type.__swig_getmethods__.get(name,None)
if method: return method(self)
raise AttributeError,name
import types
try:
_object = types.ObjectType
_newclass = 1
except AttributeError:
class _object : pass
_newclass = 0
del types
ERRORFUNC_LINEAR = _libfann.ERRORFUNC_LINEAR
ERRORFUNC_TANH = _libfann.ERRORFUNC_TANH
STOPFUNC_MSE = _libfann.STOPFUNC_MSE
STOPFUNC_BIT = _libfann.STOPFUNC_BIT
TRAIN_INCREMENTAL = _libfann.TRAIN_INCREMENTAL
TRAIN_BATCH = _libfann.TRAIN_BATCH
TRAIN_RPROP = _libfann.TRAIN_RPROP
TRAIN_QUICKPROP = _libfann.TRAIN_QUICKPROP
LINEAR = _libfann.LINEAR
THRESHOLD = _libfann.THRESHOLD
THRESHOLD_SYMMETRIC = _libfann.THRESHOLD_SYMMETRIC
SIGMOID = _libfann.SIGMOID
SIGMOID_STEPWISE = _libfann.SIGMOID_STEPWISE
SIGMOID_SYMMETRIC = _libfann.SIGMOID_SYMMETRIC
SIGMOID_SYMMETRIC_STEPWISE = _libfann.SIGMOID_SYMMETRIC_STEPWISE
GAUSSIAN = _libfann.GAUSSIAN
GAUSSIAN_SYMMETRIC = _libfann.GAUSSIAN_SYMMETRIC
GAUSSIAN_STEPWISE = _libfann.GAUSSIAN_STEPWISE
ELLIOT = _libfann.ELLIOT
ELLIOT_SYMMETRIC = _libfann.ELLIOT_SYMMETRIC
LINEAR_PIECE = _libfann.LINEAR_PIECE
LINEAR_PIECE_SYMMETRIC = _libfann.LINEAR_PIECE_SYMMETRIC
SIN_SYMMETRIC = _libfann.SIN_SYMMETRIC
COS_SYMMETRIC = _libfann.COS_SYMMETRIC
LAYER = _libfann.LAYER
SHORTCUT = _libfann.SHORTCUT
class training_data_parent(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, training_data_parent, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, training_data_parent, name)
def __repr__(self):
return "<%s.%s; proxy of C++ FANN::training_data instance at %s>" % (self.__class__.__module__, self.__class__.__name__, self.this,)
def __init__(self, *args):
_swig_setattr(self, training_data_parent, 'this', _libfann.new_training_data_parent(*args))
_swig_setattr(self, training_data_parent, 'thisown', 1)
def __del__(self, destroy=_libfann.delete_training_data_parent):
try:
if self.thisown: destroy(self)
except: pass
def destroy_train(*args): return _libfann.training_data_parent_destroy_train(*args)
def read_train_from_file(*args): return _libfann.training_data_parent_read_train_from_file(*args)
def save_train(*args): return _libfann.training_data_parent_save_train(*args)
def save_train_to_fixed(*args): return _libfann.training_data_parent_save_train_to_fixed(*args)
def shuffle_train_data(*args): return _libfann.training_data_parent_shuffle_train_data(*args)
def merge_train_data(*args): return _libfann.training_data_parent_merge_train_data(*args)
def length_train_data(*args): return _libfann.training_data_parent_length_train_data(*args)
def num_input_train_data(*args): return _libfann.training_data_parent_num_input_train_data(*args)
def num_output_train_data(*args): return _libfann.training_data_parent_num_output_train_data(*args)
def get_input(*args): return _libfann.training_data_parent_get_input(*args)
def get_output(*args): return _libfann.training_data_parent_get_output(*args)
def set_train_data(*args): return _libfann.training_data_parent_set_train_data(*args)
def create_train_from_callback(*args): return _libfann.training_data_parent_create_train_from_callback(*args)
def scale_input_train_data(*args): return _libfann.training_data_parent_scale_input_train_data(*args)
def scale_output_train_data(*args): return _libfann.training_data_parent_scale_output_train_data(*args)
def scale_train_data(*args): return _libfann.training_data_parent_scale_train_data(*args)
def subset_train_data(*args): return _libfann.training_data_parent_subset_train_data(*args)
class training_data_parentPtr(training_data_parent):
def __init__(self, this):
_swig_setattr(self, training_data_parent, 'this', this)
if not hasattr(self,"thisown"): _swig_setattr(self, training_data_parent, 'thisown', 0)
_swig_setattr(self, training_data_parent,self.__class__,training_data_parent)
_libfann.training_data_parent_swigregister(training_data_parentPtr)
class neural_net_parent(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, neural_net_parent, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, neural_net_parent, name)
def __repr__(self):
return "<%s.%s; proxy of C++ FANN::neural_net instance at %s>" % (self.__class__.__module__, self.__class__.__name__, self.this,)
def __init__(self, *args):
_swig_setattr(self, neural_net_parent, 'this', _libfann.new_neural_net_parent(*args))
_swig_setattr(self, neural_net_parent, 'thisown', 1)
def __del__(self, destroy=_libfann.delete_neural_net_parent):
try:
if self.thisown: destroy(self)
except: pass
def destroy(*args): return _libfann.neural_net_parent_destroy(*args)
def create_standard(*args): return _libfann.neural_net_parent_create_standard(*args)
def create_standard_array(*args): return _libfann.neural_net_parent_create_standard_array(*args)
def create_sparse(*args): return _libfann.neural_net_parent_create_sparse(*args)
def create_sparse_array(*args): return _libfann.neural_net_parent_create_sparse_array(*args)
def create_shortcut(*args): return _libfann.neural_net_parent_create_shortcut(*args)
def create_shortcut_array(*args): return _libfann.neural_net_parent_create_shortcut_array(*args)
def run(*args): return _libfann.neural_net_parent_run(*args)
def randomize_weights(*args): return _libfann.neural_net_parent_randomize_weights(*args)
def init_weights(*args): return _libfann.neural_net_parent_init_weights(*args)
def print_connections(*args): return _libfann.neural_net_parent_print_connections(*args)
def create_from_file(*args): return _libfann.neural_net_parent_create_from_file(*args)
def save(*args): return _libfann.neural_net_parent_save(*args)
def save_to_fixed(*args): return _libfann.neural_net_parent_save_to_fixed(*args)
def train(*args): return _libfann.neural_net_parent_train(*args)
def train_epoch(*args): return _libfann.neural_net_parent_train_epoch(*args)
def train_on_data(*args): return _libfann.neural_net_parent_train_on_data(*args)
def train_on_file(*args): return _libfann.neural_net_parent_train_on_file(*args)
def test(*args): return _libfann.neural_net_parent_test(*args)
def test_data(*args): return _libfann.neural_net_parent_test_data(*args)
def get_MSE(*args): return _libfann.neural_net_parent_get_MSE(*args)
def reset_MSE(*args): return _libfann.neural_net_parent_reset_MSE(*args)
def set_callback(*args): return _libfann.neural_net_parent_set_callback(*args)
def print_parameters(*args): return _libfann.neural_net_parent_print_parameters(*args)
def get_training_algorithm(*args): return _libfann.neural_net_parent_get_training_algorithm(*args)
def set_training_algorithm(*args): return _libfann.neural_net_parent_set_training_algorithm(*args)
def get_learning_rate(*args): return _libfann.neural_net_parent_get_learning_rate(*args)
def set_learning_rate(*args): return _libfann.neural_net_parent_set_learning_rate(*args)
def get_activation_function(*args): return _libfann.neural_net_parent_get_activation_function(*args)
def set_activation_function(*args): return _libfann.neural_net_parent_set_activation_function(*args)
def set_activation_function_layer(*args): return _libfann.neural_net_parent_set_activation_function_layer(*args)
def set_activation_function_hidden(*args): return _libfann.neural_net_parent_set_activation_function_hidden(*args)
def set_activation_function_output(*args): return _libfann.neural_net_parent_set_activation_function_output(*args)
def get_activation_steepness(*args): return _libfann.neural_net_parent_get_activation_steepness(*args)
def set_activation_steepness(*args): return _libfann.neural_net_parent_set_activation_steepness(*args)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -