📄 fann_train_data.c
字号:
/*
* Fast Artificial Neural Network Library (fann) Copyright (C) 2003
* Steffen Nissen (lukesky@diku.dk)
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include "config.h"
#include "fann.h"
/*
* Reads training data from a file.
*/
FANN_EXTERNAL struct fann_train_data *FANN_API fann_read_train_from_file(const char *configuration_file)
{
struct fann_train_data *data;
FILE *file = fopen(configuration_file, "r");
if(!file)
{
fann_error(NULL, FANN_E_CANT_OPEN_CONFIG_R, configuration_file);
return NULL;
}
data = fann_read_train_from_fd(file, configuration_file);
fclose(file);
return data;
}
/*
* Save training data to a file
*/
FANN_EXTERNAL int FANN_API fann_save_train(struct fann_train_data *data, const char *filename)
{
return fann_save_train_internal(data, filename, 0, 0);
}
/*
* Save training data to a file in fixed point algebra. (Good for testing
* a network in fixed point)
*/
FANN_EXTERNAL int FANN_API fann_save_train_to_fixed(struct fann_train_data *data, const char *filename,
unsigned int decimal_point)
{
return fann_save_train_internal(data, filename, 1, decimal_point);
}
/*
* deallocate the train data structure.
*/
FANN_EXTERNAL void FANN_API fann_destroy_train(struct fann_train_data *data)
{
if(data == NULL)
return;
if(data->input != NULL)
fann_safe_free(data->input[0]);
if(data->output != NULL)
fann_safe_free(data->output[0]);
fann_safe_free(data->input);
fann_safe_free(data->output);
fann_safe_free(data);
}
/*
* Test a set of training data and calculate the MSE
*/
FANN_EXTERNAL float FANN_API fann_test_data(struct fann *ann, struct fann_train_data *data)
{
unsigned int i;
fann_reset_MSE(ann);
for(i = 0; i != data->num_data; i++)
{
fann_test(ann, data->input[i], data->output[i]);
}
return fann_get_MSE(ann);
}
/*
* Creates training data from a callback function.
*/
FANN_EXTERNAL struct fann_train_data * FANN_API fann_create_train_from_callback(unsigned int num_data,
unsigned int num_input,
unsigned int num_output,
void (FANN_API *user_function)( unsigned int,
unsigned int,
unsigned int,
fann_type * ,
fann_type * ))
{
unsigned int i;
fann_type *data_input, *data_output;
struct fann_train_data *data = (struct fann_train_data *)
malloc(sizeof(struct fann_train_data));
if(data == NULL){
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
return NULL;
}
fann_init_error_data((struct fann_error *) data);
data->num_data = num_data;
data->num_input = num_input;
data->num_output = num_output;
data->input = (fann_type **) calloc(num_data, sizeof(fann_type *));
if(data->input == NULL)
{
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
fann_destroy_train(data);
return NULL;
}
data->output = (fann_type **) calloc(num_data, sizeof(fann_type *));
if(data->output == NULL)
{
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
fann_destroy_train(data);
return NULL;
}
data_input = (fann_type *) calloc(num_input * num_data, sizeof(fann_type));
if(data_input == NULL)
{
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
fann_destroy_train(data);
return NULL;
}
data_output = (fann_type *) calloc(num_output * num_data, sizeof(fann_type));
if(data_output == NULL)
{
fann_error(NULL, FANN_E_CANT_ALLOCATE_MEM);
fann_destroy_train(data);
return NULL;
}
for( i = 0; i != num_data; i++)
{
data->input[i] = data_input;
data_input += num_input;
data->output[i] = data_output;
data_output += num_output;
(*user_function)(i, num_input, num_output, data->input[i],data->output[i] );
}
return data;
}
#ifndef FIXEDFANN
/*
* Internal train function
*/
float fann_train_epoch_quickprop(struct fann *ann, struct fann_train_data *data)
{
unsigned int i;
if(ann->prev_train_slopes == NULL)
{
fann_clear_train_arrays(ann);
}
fann_reset_MSE(ann);
for(i = 0; i < data->num_data; i++)
{
fann_run(ann, data->input[i]);
fann_compute_MSE(ann, data->output[i]);
fann_backpropagate_MSE(ann);
fann_update_slopes_batch(ann, ann->first_layer + 1, ann->last_layer - 1);
}
fann_update_weights_quickprop(ann, data->num_data, 0, ann->total_connections);
return fann_get_MSE(ann);
}
/*
* Internal train function
*/
float fann_train_epoch_irpropm(struct fann *ann, struct fann_train_data *data)
{
unsigned int i;
if(ann->prev_train_slopes == NULL)
{
fann_clear_train_arrays(ann);
}
fann_reset_MSE(ann);
for(i = 0; i < data->num_data; i++)
{
fann_run(ann, data->input[i]);
fann_compute_MSE(ann, data->output[i]);
fann_backpropagate_MSE(ann);
fann_update_slopes_batch(ann, ann->first_layer + 1, ann->last_layer - 1);
}
fann_update_weights_irpropm(ann, 0, ann->total_connections);
return fann_get_MSE(ann);
}
/*
* Internal train function
*/
float fann_train_epoch_batch(struct fann *ann, struct fann_train_data *data)
{
unsigned int i;
fann_reset_MSE(ann);
for(i = 0; i < data->num_data; i++)
{
fann_run(ann, data->input[i]);
fann_compute_MSE(ann, data->output[i]);
fann_backpropagate_MSE(ann);
fann_update_slopes_batch(ann, ann->first_layer + 1, ann->last_layer - 1);
}
fann_update_weights_batch(ann, data->num_data, 0, ann->total_connections);
return fann_get_MSE(ann);
}
/*
* Internal train function
*/
float fann_train_epoch_incremental(struct fann *ann, struct fann_train_data *data)
{
unsigned int i;
fann_reset_MSE(ann);
for(i = 0; i != data->num_data; i++)
{
fann_train(ann, data->input[i], data->output[i]);
}
return fann_get_MSE(ann);
}
/*
* Train for one epoch with the selected training algorithm
*/
FANN_EXTERNAL float FANN_API fann_train_epoch(struct fann *ann, struct fann_train_data *data)
{
switch (ann->training_algorithm)
{
case FANN_TRAIN_QUICKPROP:
return fann_train_epoch_quickprop(ann, data);
case FANN_TRAIN_RPROP:
return fann_train_epoch_irpropm(ann, data);
case FANN_TRAIN_BATCH:
return fann_train_epoch_batch(ann, data);
case FANN_TRAIN_INCREMENTAL:
return fann_train_epoch_incremental(ann, data);
}
return 0;
}
FANN_EXTERNAL void FANN_API fann_train_on_data(struct fann *ann, struct fann_train_data *data,
unsigned int max_epochs,
unsigned int epochs_between_reports,
float desired_error)
{
float error;
unsigned int i;
int desired_error_reached;
#ifdef DEBUG
printf("Training with %s\n", FANN_TRAIN_NAMES[ann->training_algorithm]);
#endif
if(epochs_between_reports && ann->callback == NULL)
{
printf("Max epochs %8d. Desired error: %.10f.\n", max_epochs, desired_error);
}
for(i = 1; i <= max_epochs; i++)
{
/*
* train
*/
error = fann_train_epoch(ann, data);
desired_error_reached = fann_desired_error_reached(ann, desired_error);
/*
* print current output
*/
if(epochs_between_reports &&
(i % epochs_between_reports == 0 || i == max_epochs || i == 1 ||
desired_error_reached == 0))
{
if(ann->callback == NULL)
{
printf("Epochs %8d. Current error: %.10f. Bit fail %d.\n", i, error,
ann->num_bit_fail);
}
else if(((*ann->callback)(ann, data, max_epochs, epochs_between_reports,
desired_error, i)) == -1)
{
/*
* you can break the training by returning -1
*/
break;
}
}
if(desired_error_reached == 0)
break;
}
}
FANN_EXTERNAL void FANN_API fann_train_on_file(struct fann *ann, const char *filename,
unsigned int max_epochs,
unsigned int epochs_between_reports,
float desired_error)
{
struct fann_train_data *data = fann_read_train_from_file(filename);
if(data == NULL)
{
return;
}
fann_train_on_data(ann, data, max_epochs, epochs_between_reports, desired_error);
fann_destroy_train(data);
}
#endif
/*
* shuffles training data, randomizing the order
*/
FANN_EXTERNAL void FANN_API fann_shuffle_train_data(struct fann_train_data *train_data)
{
unsigned int dat = 0, elem, swap;
fann_type temp;
for(; dat < train_data->num_data; dat++)
{
swap = (unsigned int) (rand() % train_data->num_data);
if(swap != dat)
{
for(elem = 0; elem < train_data->num_input; elem++)
{
temp = train_data->input[dat][elem];
train_data->input[dat][elem] = train_data->input[swap][elem];
train_data->input[swap][elem] = temp;
}
for(elem = 0; elem < train_data->num_output; elem++)
{
temp = train_data->output[dat][elem];
train_data->output[dat][elem] = train_data->output[swap][elem];
train_data->output[swap][elem] = temp;
}
}
}
}
/*
* INTERNAL FUNCTION Scales data to a specific range
*/
void fann_scale_data(fann_type ** data, unsigned int num_data, unsigned int num_elem,
fann_type new_min, fann_type new_max)
{
unsigned int dat, elem;
fann_type old_min, old_max, temp, old_span, new_span, factor;
old_min = old_max = data[0][0];
/*
* first calculate min and max
*/
for(dat = 0; dat < num_data; dat++)
{
for(elem = 0; elem < num_elem; elem++)
{
temp = data[dat][elem];
if(temp < old_min)
old_min = temp;
else if(temp > old_max)
old_max = temp;
}
}
old_span = old_max - old_min;
new_span = new_max - new_min;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -