📄 abyss_settings.java
字号:
/** * AbYSS_Settings.java * * @author Antonio J. Nebro * @version 1.0 * * MOCell_Settings class of algorithm AbYSS */package jmetal.experiments.settings;import jmetal.metaheuristics.abyss.*;import java.util.Properties;import jmetal.base.Algorithm;import jmetal.base.Operator;import jmetal.base.Problem;import jmetal.base.operator.crossover.CrossoverFactory;import jmetal.base.operator.localSearch.MutationLocalSearch;import jmetal.base.operator.mutation.MutationFactory;import jmetal.base.operator.selection.SelectionFactory;import jmetal.experiments.Settings;import jmetal.problems.ProblemFactory;import jmetal.qualityIndicator.QualityIndicator;import jmetal.util.JMException;/** * Constructor */public class AbYSS_Settings extends Settings { // Default settings int populationSize_ = 100; int maxEvaluations_ = 25000; int archiveSize_ = 100; int refSet1Size_ = 20; int refSet2Size_ = 20; double mutationProbability_ = 1.0 / problem_.getNumberOfVariables(); double crossoverProbability_ = 1.0; double distributionIndexForMutation_ = 20; double distributionIndexForCrossover_ = 20; int improvementRounds_ = 1; String paretoFrontFile_ = ""; /** * Constructor */ public AbYSS_Settings(Problem problem) { super(problem); } // MOCell_Settings /** * Configure the MOCell algorithm with default parameter settings * @return an algorithm object * @throws jmetal.util.JMException */ public Algorithm configure() throws JMException { Algorithm algorithm; Operator crossover; Operator mutation; Operator improvement; // Operator for improvement QualityIndicator indicators; // Creating the problem algorithm = new AbYSS(problem_); // Algorithm parameters algorithm.setInputParameter("populationSize", 20); algorithm.setInputParameter("refSet1Size", 10); algorithm.setInputParameter("refSet2Size", 10); algorithm.setInputParameter("archiveSize", 100); algorithm.setInputParameter("maxEvaluations", 25000); // Mutation and Crossover for Real codification crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover"); crossover.setParameter("probability", crossoverProbability_); crossover.setParameter("distributionIndex", distributionIndexForCrossover_); mutation = MutationFactory.getMutationOperator("PolynomialMutation"); mutation.setParameter("probability", mutationProbability_); mutation.setParameter("distributionIndex", distributionIndexForMutation_); // STEP 4. Specify and configure the crossover operator, used in the // solution combination method of the scatter search crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover"); crossover.setParameter("probability", crossoverProbability_); crossover.setParameter("distributionIndex", distributionIndexForCrossover_); // STEP 5. Specify and configure the improvement method. We use by default // a polynomial mutation in this method. mutation = MutationFactory.getMutationOperator("PolynomialMutation"); mutation.setParameter("probability", mutationProbability_); mutation.setParameter("distributionIndex", distributionIndexForMutation_); improvement = new MutationLocalSearch(problem_, mutation); improvement.setParameter("improvementRounds", improvementRounds_); // STEP 6. Add the operators to the algorithm algorithm.addOperator("crossover", crossover); algorithm.addOperator("improvement", improvement); // Creating the indicator object if (!paretoFrontFile_.equals("")) { indicators = new QualityIndicator(problem_, paretoFrontFile_); algorithm.setInputParameter("indicators", indicators); } // if return algorithm; } // Constructor /** * Configure an algorithm with user-defined parameter settings * @param settings * @return An algorithm * @throws jmetal.util.JMException */ public Algorithm configure(Properties settings) throws JMException { if (settings != null) { populationSize_ = Integer.parseInt(settings.getProperty("POPULATION_SIZE", "" + populationSize_)); maxEvaluations_ = Integer.parseInt(settings.getProperty("MAX_EVALUATIONS", "" + maxEvaluations_)); archiveSize_ = Integer.parseInt(settings.getProperty("ARCHIVE_SIZE", "" + archiveSize_)); refSet1Size_ = Integer.parseInt(settings.getProperty("REF_SET1_SIZE", "" + refSet1Size_)); refSet2Size_ = Integer.parseInt(settings.getProperty("REF_SET2_SIZE", "" + refSet2Size_)); improvementRounds_ = Integer.parseInt(settings.getProperty("IMPROVEMENT_ROUNDS", "" + improvementRounds_)); crossoverProbability_ = Double.parseDouble(settings.getProperty("CROSSOVER_PROBABILITY", "" + crossoverProbability_)); mutationProbability_ = Double.parseDouble(settings.getProperty("MUTATION_PROBABILITY", "" + mutationProbability_)); distributionIndexForMutation_ = Double.parseDouble(settings.getProperty("DISTRIBUTION_INDEX_FOR_MUTATION", "" + distributionIndexForMutation_)); distributionIndexForCrossover_ = Double.parseDouble(settings.getProperty("DISTRIBUTION_INDEX_FOR_CROSSOVER", "" + distributionIndexForCrossover_)); paretoFrontFile_ = settings.getProperty("PARETO_FRONT_FILE", ""); } return configure(); }} // AbYSS_Settings
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -