⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dbst.h

📁 一本全面剖析C++数据结构算法的书籍
💻 H
字号:
// dbst.h// binary search tree with duplicate values#ifndef DBSTree_#define DBSTree_#include "binary.h"#include "xcept.h"template<class E, class K>class DBSTree : public BinaryTree<E> {   public:      bool Search(const K& k, E& e) const;      bool FindGE(const K& k, K& Kout) const;      DBSTree<E,K>& Insert(const E& e);      DBSTree<E,K>& Delete(const K& k, E& e);      void Ascend() {InOutput();}};template<class E, class K>bool DBSTree<E,K>::           Search(const K& k, E& e) const{// Search for element that matches k.   // pointer p starts at the root and moves through   // the tree looking for an element with key k   BinaryTreeNode<E> *p = root;   while (p) {// examine p->data      if (k < p->data) p = p->LeftChild;      else if (k > p->data) p = p->RightChild;           else {// found element                 e = p->data;                 return true;}}   return false;}template<class E, class K>DBSTree<E,K>& DBSTree<E,K>::Insert(const E& e){// Insert e.   BinaryTreeNode<E> *p = root,  // search pointer                     *pp = 0;    // parent of p   // find place to insert   while (p) {// examine p->data      pp = p;      // move p to a child      if (e <= p->data) p = p->LeftChild;      else p = p->RightChild;      }   // get a node for e and attach to pp   BinaryTreeNode<E> *r = new BinaryTreeNode<E> (e);   if (root) {// tree not empty      if (e < pp->data) pp->LeftChild = r;      else pp->RightChild = r;}   else // insertion into empty tree        root = r;   return *this;}template<class E, class K>DBSTree<E,K>& DBSTree<E,K>::           Delete(const K& k, E& e){// Delete element with key k and put it in e.   // set p to point to node with key k   BinaryTreeNode<E> *p = root, // search pointer                     *pp = 0;   // parent of p   while (p && p->data != k){// move to a child of p      pp = p;      if (k < p->data) p = p->LeftChild;      else p = p->RightChild;      }   if (!p) throw BadInput(); // no element with key k   e = p->data;  // save element to delete   // restructure tree   // handle case when p has two children   if (p->LeftChild && p->RightChild) {// two children      // convert to zero or one child case      // find largest element in left subtree of p      BinaryTreeNode<E> *s = p->LeftChild,                        *ps = p;  // parent of s      while (s->RightChild) {// move to larger element         ps = s;         s = s->RightChild;}      // move largest from s to p      p->data = s->data;      p = s;      pp = ps;}   // p has at most one child   // save child pointer in c   BinaryTreeNode<E> *c;   if (p->LeftChild) c = p->LeftChild;   else c = p->RightChild;   // delete p   if (p == root) root = c;   else {// is p left or right child of pp?         if (p == pp->LeftChild)              pp->LeftChild = c;         else pp->RightChild = c;}   delete p;   return *this;}template<class E, class K>bool DBSTree<E,K>::FindGE(const K& k, K& Kout) const{// Find smallest element with value >= k.   BinaryTreeNode<E> *p = root,  // search pointer                     *s = 0;     // pointer to smallest                                 // >= k found so far   // search the tree   while (p) {      // is p a candidate?      if (k <= p->data) {// yes          s = p;  // p is a better candidate than s          // smaller elements in left subtree only          p = p->LeftChild;}      else  // no, p->data too small, try right subtree          p = p->RightChild;      }   if (!s) return false; // not found   Kout = s->data;   return true;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -