📄 lwdgraph.h
字号:
// file lwdgraph.h// linked adjacency list representation of a weighted directed graph// initial version#ifndef LinkedWDigraph_#define LinkedWDigraph_#include <iostream.h>#include "lbase.h"#include "gnode.h"#include "xcept.h"template<class T>class LinkedWDigraph : public LinkedBase<GraphNode<T> > { public: LinkedWDigraph(int Vertices = 10) : LinkedBase<GraphNode<T> > (Vertices) {} bool Exist(int i, int j) const; LinkedWDigraph<T>& Add(int i, int j, const T& w); LinkedWDigraph<T>& Delete(int i, int j); int InDegree(int i) const; protected: LinkedWDigraph<T>& AddNoCheck(int i, int j, const T& w);};template<class T>bool LinkedWDigraph<T>::Exist(int i, int j) const{// Is edge (i,j) present? if (i < 1 || i > n) throw OutOfBounds(); GraphNode<T> x; x.vertex = j; return h[i].Search(x);}template<class T>LinkedWDigraph<T>& LinkedWDigraph<T> ::Add(int i, int j, const T& w){// Add edge (i,j). if (i < 1 || j < 1 || i > n || j > n || i == j || Exist(i, j)) throw BadInput(); return AddNoCheck(i, j, w);}template<class T>LinkedWDigraph<T>& LinkedWDigraph<T> ::AddNoCheck(int i, int j, const T& w){// Add (i,j) with no error checks. GraphNode<T> x; x.vertex = j; x.weight = w; h[i].Insert(0,x); e++; return *this;}template<class T>LinkedWDigraph<T>& LinkedWDigraph<T> ::Delete(int i, int j){// Delete edge (i,j). if (i < 1 || i > n) throw OutOfBounds(); GraphNode<T> x; x.vertex = j; h[i].Delete(x); e--; return *this;}template<class T>int LinkedWDigraph<T>::InDegree(int i) const{// Return indegree of vertex i. if (i < 1 || i > n) throw OutOfBounds(); int sum = 0; GraphNode<T> x; x.vertex = i; // check all lists for edge (j,i) for (int j = 1; j <= n; j++) if (h[j].Search(x)) sum++; return sum;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -