⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ltc_ecc_mulmod_timing.c

📁 全功能的加密库
💻 C
字号:
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org *//* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */#include "tomcrypt.h"/**  @file ltc_ecc_mulmod_timing.c  ECC Crypto, Tom St Denis*/  #ifdef LTC_MECC#ifdef LTC_ECC_TIMING_RESISTANT/**   Perform a point multiplication  (timing resistant)   @param k    The scalar to multiply by   @param G    The base point   @param R    [out] Destination for kG   @param modulus  The modulus of the field the ECC curve is in   @param map      Boolean whether to map back to affine or not (1==map, 0 == leave in projective)   @return CRYPT_OK on success*/int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map){   ecc_point *tG, *M[3];   int        i, j, err;   void       *mu, *mp;   unsigned long buf;   int        first, bitbuf, bitcpy, bitcnt, mode, digidx;   LTC_ARGCHK(k       != NULL);   LTC_ARGCHK(G       != NULL);   LTC_ARGCHK(R       != NULL);   LTC_ARGCHK(modulus != NULL);   /* init montgomery reduction */   if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) {      return err;   }   if ((err = mp_init(&mu)) != CRYPT_OK) {      mp_montgomery_free(mp);      return err;   }   if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) {      mp_clear(mu);      mp_montgomery_free(mp);      return err;   }  /* alloc ram for window temps */  for (i = 0; i < 3; i++) {      M[i] = ltc_ecc_new_point();      if (M[i] == NULL) {         for (j = 0; j < i; j++) {             ltc_ecc_del_point(M[j]);         }         mp_clear(mu);         mp_montgomery_free(mp);         return CRYPT_MEM;      }  }   /* make a copy of G incase R==G */   tG = ltc_ecc_new_point();   if (tG == NULL)                                                                   { err = CRYPT_MEM; goto done; }   /* tG = G  and convert to montgomery */   if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK)                      { goto done; }   if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK)                      { goto done; }   if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK)                      { goto done; }   mp_clear(mu);   mu = NULL;      /* calc the M tab */   /* M[0] == G */   if ((err = mp_copy(tG->x, M[0]->x)) != CRYPT_OK)                                  { goto done; }   if ((err = mp_copy(tG->y, M[0]->y)) != CRYPT_OK)                                  { goto done; }   if ((err = mp_copy(tG->z, M[0]->z)) != CRYPT_OK)                                  { goto done; }   /* M[1] == 2G */   if ((err = ltc_mp.ecc_ptdbl(tG, M[1], modulus, mp)) != CRYPT_OK)                  { goto done; }   /* setup sliding window */   mode   = 0;   bitcnt = 1;   buf    = 0;   digidx = mp_get_digit_count(k) - 1;   bitcpy = bitbuf = 0;   first  = 1;   /* perform ops */   for (;;) {     /* grab next digit as required */      if (--bitcnt == 0) {         if (digidx == -1) {            break;         }         buf    = mp_get_digit(k, digidx);         bitcnt = (int) MP_DIGIT_BIT;         --digidx;      }      /* grab the next msb from the ltiplicand */      i = (buf >> (MP_DIGIT_BIT - 1)) & 1;      buf <<= 1;      if (mode == 0 && i == 0) {         /* dummy operations */         if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK)    { goto done; }         if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK)          { goto done; }         continue;      }      if (mode == 0 && i == 1) {         mode = 1;         /* dummy operations */         if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[2], modulus, mp)) != CRYPT_OK)    { goto done; }         if ((err = ltc_mp.ecc_ptdbl(M[1], M[2], modulus, mp)) != CRYPT_OK)          { goto done; }         continue;      }      if ((err = ltc_mp.ecc_ptadd(M[0], M[1], M[i^1], modulus, mp)) != CRYPT_OK)     { goto done; }      if ((err = ltc_mp.ecc_ptdbl(M[i], M[i], modulus, mp)) != CRYPT_OK)             { goto done; }   }   /* copy result out */   if ((err = mp_copy(M[0]->x, R->x)) != CRYPT_OK)                                   { goto done; }   if ((err = mp_copy(M[0]->y, R->y)) != CRYPT_OK)                                   { goto done; }   if ((err = mp_copy(M[0]->z, R->z)) != CRYPT_OK)                                   { goto done; }   /* map R back from projective space */   if (map) {      err = ltc_ecc_map(R, modulus, mp);   } else {      err = CRYPT_OK;   }done:   if (mu != NULL) {      mp_clear(mu);   }   mp_montgomery_free(mp);   ltc_ecc_del_point(tG);   for (i = 0; i < 3; i++) {       ltc_ecc_del_point(M[i]);   }   return err;}#endif#endif/* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_mulmod_timing.c,v $ *//* $Revision: 1.13 $ *//* $Date: 2007/05/12 14:32:35 $ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -