⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ltc_ecc_mulmod.c

📁 全功能的加密库
💻 C
字号:
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org *//* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */#include "tomcrypt.h"/**  @file ltc_ecc_mulmod.c  ECC Crypto, Tom St Denis*/  #ifdef LTC_MECC#ifndef LTC_ECC_TIMING_RESISTANT/* size of sliding window, don't change this! */#define WINSIZE 4/**   Perform a point multiplication    @param k    The scalar to multiply by   @param G    The base point   @param R    [out] Destination for kG   @param modulus  The modulus of the field the ECC curve is in   @param map      Boolean whether to map back to affine or not (1==map, 0 == leave in projective)   @return CRYPT_OK on success*/int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map){   ecc_point *tG, *M[8];   int        i, j, err;   void       *mu, *mp;   unsigned long buf;   int        first, bitbuf, bitcpy, bitcnt, mode, digidx;   LTC_ARGCHK(k       != NULL);   LTC_ARGCHK(G       != NULL);   LTC_ARGCHK(R       != NULL);   LTC_ARGCHK(modulus != NULL);   /* init montgomery reduction */   if ((err = mp_montgomery_setup(modulus, &mp)) != CRYPT_OK) {      return err;   }   if ((err = mp_init(&mu)) != CRYPT_OK) {      mp_montgomery_free(mp);      return err;   }   if ((err = mp_montgomery_normalization(mu, modulus)) != CRYPT_OK) {      mp_montgomery_free(mp);      mp_clear(mu);      return err;   }    /* alloc ram for window temps */  for (i = 0; i < 8; i++) {      M[i] = ltc_ecc_new_point();      if (M[i] == NULL) {         for (j = 0; j < i; j++) {             ltc_ecc_del_point(M[j]);         }         mp_montgomery_free(mp);         mp_clear(mu);         return CRYPT_MEM;      }  }   /* make a copy of G incase R==G */   tG = ltc_ecc_new_point();   if (tG == NULL)                                                                   { err = CRYPT_MEM; goto done; }   /* tG = G  and convert to montgomery */   if (mp_cmp_d(mu, 1) == LTC_MP_EQ) {      if ((err = mp_copy(G->x, tG->x)) != CRYPT_OK)                                  { goto done; }      if ((err = mp_copy(G->y, tG->y)) != CRYPT_OK)                                  { goto done; }      if ((err = mp_copy(G->z, tG->z)) != CRYPT_OK)                                  { goto done; }   } else {            if ((err = mp_mulmod(G->x, mu, modulus, tG->x)) != CRYPT_OK)                   { goto done; }      if ((err = mp_mulmod(G->y, mu, modulus, tG->y)) != CRYPT_OK)                   { goto done; }      if ((err = mp_mulmod(G->z, mu, modulus, tG->z)) != CRYPT_OK)                   { goto done; }   }   mp_clear(mu);   mu = NULL;      /* calc the M tab, which holds kG for k==8..15 */   /* M[0] == 8G */   if ((err = ltc_mp.ecc_ptdbl(tG, M[0], modulus, mp)) != CRYPT_OK)                 { goto done; }   if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK)               { goto done; }   if ((err = ltc_mp.ecc_ptdbl(M[0], M[0], modulus, mp)) != CRYPT_OK)               { goto done; }   /* now find (8+k)G for k=1..7 */   for (j = 9; j < 16; j++) {       if ((err = ltc_mp.ecc_ptadd(M[j-9], tG, M[j-8], modulus, mp)) != CRYPT_OK)   { goto done; }   }   /* setup sliding window */   mode   = 0;   bitcnt = 1;   buf    = 0;   digidx = mp_get_digit_count(k) - 1;   bitcpy = bitbuf = 0;   first  = 1;   /* perform ops */   for (;;) {     /* grab next digit as required */     if (--bitcnt == 0) {       if (digidx == -1) {          break;       }       buf    = mp_get_digit(k, digidx);       bitcnt = (int) ltc_mp.bits_per_digit;       --digidx;     }     /* grab the next msb from the ltiplicand */     i = (buf >> (ltc_mp.bits_per_digit - 1)) & 1;     buf <<= 1;     /* skip leading zero bits */     if (mode == 0 && i == 0) {        continue;     }     /* if the bit is zero and mode == 1 then we double */     if (mode == 1 && i == 0) {        if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK)                 { goto done; }        continue;     }     /* else we add it to the window */     bitbuf |= (i << (WINSIZE - ++bitcpy));     mode = 2;     if (bitcpy == WINSIZE) {       /* if this is the first window we do a simple copy */       if (first == 1) {          /* R = kG [k = first window] */          if ((err = mp_copy(M[bitbuf-8]->x, R->x)) != CRYPT_OK)                     { goto done; }          if ((err = mp_copy(M[bitbuf-8]->y, R->y)) != CRYPT_OK)                     { goto done; }          if ((err = mp_copy(M[bitbuf-8]->z, R->z)) != CRYPT_OK)                     { goto done; }          first = 0;       } else {         /* normal window */         /* ok window is filled so double as required and add  */         /* double first */         for (j = 0; j < WINSIZE; j++) {           if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK)              { goto done; }         }         /* then add, bitbuf will be 8..15 [8..2^WINSIZE] guaranteed */         if ((err = ltc_mp.ecc_ptadd(R, M[bitbuf-8], R, modulus, mp)) != CRYPT_OK)   { goto done; }       }       /* empty window and reset */       bitcpy = bitbuf = 0;       mode = 1;    }  }   /* if bits remain then double/add */   if (mode == 2 && bitcpy > 0) {     /* double then add */     for (j = 0; j < bitcpy; j++) {       /* only double if we have had at least one add first */       if (first == 0) {          if ((err = ltc_mp.ecc_ptdbl(R, R, modulus, mp)) != CRYPT_OK)              { goto done; }       }       bitbuf <<= 1;       if ((bitbuf & (1 << WINSIZE)) != 0) {         if (first == 1){            /* first add, so copy */            if ((err = mp_copy(tG->x, R->x)) != CRYPT_OK)                           { goto done; }            if ((err = mp_copy(tG->y, R->y)) != CRYPT_OK)                           { goto done; }            if ((err = mp_copy(tG->z, R->z)) != CRYPT_OK)                           { goto done; }            first = 0;         } else {            /* then add */            if ((err = ltc_mp.ecc_ptadd(R, tG, R, modulus, mp)) != CRYPT_OK)        { goto done; }         }       }     }   }   /* map R back from projective space */   if (map) {      err = ltc_ecc_map(R, modulus, mp);   } else {      err = CRYPT_OK;   }done:   if (mu != NULL) {      mp_clear(mu);   }   mp_montgomery_free(mp);   ltc_ecc_del_point(tG);   for (i = 0; i < 8; i++) {       ltc_ecc_del_point(M[i]);   }   return err;}#endif#undef WINSIZE#endif/* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_mulmod.c,v $ *//* $Revision: 1.26 $ *//* $Date: 2007/05/12 14:32:35 $ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -