⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ac3dec.c

📁 ffmpeg移植到symbian的全部源代码
💻 C
📖 第 1 页 / 共 3 页
字号:
                    master_cpl_coord = 3 * get_bits(gbc, 2);                    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {                        cpl_coord_exp = get_bits(gbc, 4);                        cpl_coord_mant = get_bits(gbc, 4);                        if (cpl_coord_exp == 15)                            s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;                        else                            s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;                        s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);                    }                } else if (!blk) {                    av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");                    return -1;                }            }        }        /* phase flags */        if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {                s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;            }        }    }    /* stereo rematrixing strategy and band structure */    if (channel_mode == AC3_CHMODE_STEREO) {        if (get_bits1(gbc)) {            s->num_rematrixing_bands = 4;            if(cpl_in_use && s->start_freq[CPL_CH] <= 61)                s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);            for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)                s->rematrixing_flags[bnd] = get_bits1(gbc);        } else if (!blk) {            av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");            return -1;        }    }    /* exponent strategies for each channel */    s->exp_strategy[blk][CPL_CH] = EXP_REUSE;    s->exp_strategy[blk][s->lfe_ch] = EXP_REUSE;    for (ch = !cpl_in_use; ch <= s->channels; ch++) {        s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));        if(s->exp_strategy[blk][ch] != EXP_REUSE)            bit_alloc_stages[ch] = 3;    }    /* channel bandwidth */    for (ch = 1; ch <= fbw_channels; ch++) {        s->start_freq[ch] = 0;        if (s->exp_strategy[blk][ch] != EXP_REUSE) {            int group_size;            int prev = s->end_freq[ch];            if (s->channel_in_cpl[ch])                s->end_freq[ch] = s->start_freq[CPL_CH];            else {                int bandwidth_code = get_bits(gbc, 6);                if (bandwidth_code > 60) {                    av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);                    return -1;                }                s->end_freq[ch] = bandwidth_code * 3 + 73;            }            group_size = 3 << (s->exp_strategy[blk][ch] - 1);            s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;            if(blk > 0 && s->end_freq[ch] != prev)                memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);        }    }    if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {        s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /                                    (3 << (s->exp_strategy[blk][CPL_CH] - 1));    }    /* decode exponents for each channel */    for (ch = !cpl_in_use; ch <= s->channels; ch++) {        if (s->exp_strategy[blk][ch] != EXP_REUSE) {            s->dexps[ch][0] = get_bits(gbc, 4) << !ch;            decode_exponents(gbc, s->exp_strategy[blk][ch],                             s->num_exp_groups[ch], s->dexps[ch][0],                             &s->dexps[ch][s->start_freq[ch]+!!ch]);            if(ch != CPL_CH && ch != s->lfe_ch)                skip_bits(gbc, 2); /* skip gainrng */        }    }    /* bit allocation information */    if (get_bits1(gbc)) {        s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;        s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;        s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];        s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];        s->bit_alloc_params.floor  = ff_ac3_floor_tab[get_bits(gbc, 3)];        for(ch=!cpl_in_use; ch<=s->channels; ch++)            bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);    } else if (!blk) {        av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");        return -1;    }    /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */    if (get_bits1(gbc)) {        int csnr;        csnr = (get_bits(gbc, 6) - 15) << 4;        for (ch = !cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */            s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;            s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];        }        memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);    } else if (!blk) {        av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");        return -1;    }    /* coupling leak information */    if (cpl_in_use) {        if (get_bits1(gbc)) {            s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);            s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);            bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);        } else if (!blk) {            av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");            return -1;        }    }    /* delta bit allocation information */    if (get_bits1(gbc)) {        /* delta bit allocation exists (strategy) */        for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {            s->dba_mode[ch] = get_bits(gbc, 2);            if (s->dba_mode[ch] == DBA_RESERVED) {                av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");                return -1;            }            bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);        }        /* channel delta offset, len and bit allocation */        for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {            if (s->dba_mode[ch] == DBA_NEW) {                s->dba_nsegs[ch] = get_bits(gbc, 3);                for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {                    s->dba_offsets[ch][seg] = get_bits(gbc, 5);                    s->dba_lengths[ch][seg] = get_bits(gbc, 4);                    s->dba_values[ch][seg] = get_bits(gbc, 3);                }                /* run last 2 bit allocation stages if new dba values */                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);            }        }    } else if(blk == 0) {        for(ch=0; ch<=s->channels; ch++) {            s->dba_mode[ch] = DBA_NONE;        }    }    /* Bit allocation */    for(ch=!cpl_in_use; ch<=s->channels; ch++) {        if(bit_alloc_stages[ch] > 2) {            /* Exponent mapping into PSD and PSD integration */            ff_ac3_bit_alloc_calc_psd(s->dexps[ch],                                      s->start_freq[ch], s->end_freq[ch],                                      s->psd[ch], s->band_psd[ch]);        }        if(bit_alloc_stages[ch] > 1) {            /* Compute excitation function, Compute masking curve, and               Apply delta bit allocation */            ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],                                       s->start_freq[ch], s->end_freq[ch],                                       s->fast_gain[ch], (ch == s->lfe_ch),                                       s->dba_mode[ch], s->dba_nsegs[ch],                                       s->dba_offsets[ch], s->dba_lengths[ch],                                       s->dba_values[ch], s->mask[ch]);        }        if(bit_alloc_stages[ch] > 0) {            /* Compute bit allocation */            ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],                                      s->start_freq[ch], s->end_freq[ch],                                      s->snr_offset[ch],                                      s->bit_alloc_params.floor,                                      ff_ac3_bap_tab, s->bap[ch]);        }    }    /* unused dummy data */    if (get_bits1(gbc)) {        int skipl = get_bits(gbc, 9);        while(skipl--)            skip_bits(gbc, 8);    }    /* unpack the transform coefficients       this also uncouples channels if coupling is in use. */    get_transform_coeffs(s);    /* recover coefficients if rematrixing is in use */    if(s->channel_mode == AC3_CHMODE_STEREO)        do_rematrixing(s);    /* apply scaling to coefficients (headroom, dynrng) */    for(ch=1; ch<=s->channels; ch++) {        float gain = s->mul_bias / 4194304.0f;        if(s->channel_mode == AC3_CHMODE_DUALMONO) {            gain *= s->dynamic_range[ch-1];        } else {            gain *= s->dynamic_range[0];        }        for(i=0; i<256; i++) {            s->transform_coeffs[ch][i] = s->fixed_coeffs[ch][i] * gain;        }    }    /* downmix and MDCT. order depends on whether block switching is used for       any channel in this block. this is because coefficients for the long       and short transforms cannot be mixed. */    downmix_output = s->channels != s->out_channels &&                     !((s->output_mode & AC3_OUTPUT_LFEON) &&                     s->fbw_channels == s->out_channels);    if(different_transforms) {        /* the delay samples have already been downmixed, so we upmix the delay           samples in order to reconstruct all channels before downmixing. */        if(s->downmixed) {            s->downmixed = 0;            ac3_upmix_delay(s);        }        do_imdct(s, s->channels);        if(downmix_output) {            ac3_downmix(s, s->output, 0);        }    } else {        if(downmix_output) {            ac3_downmix(s, s->transform_coeffs, 1);        }        if(!s->downmixed) {            s->downmixed = 1;            ac3_downmix(s, s->delay, 0);        }        do_imdct(s, s->out_channels);    }    /* convert float to 16-bit integer */    for(ch=0; ch<s->out_channels; ch++) {        for(i=0; i<256; i++) {            s->output[ch][i] += s->add_bias;        }        s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256);    }    return 0;}/** * Decode a single AC-3 frame. */static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,                            const uint8_t *buf, int buf_size){    AC3DecodeContext *s = avctx->priv_data;    int16_t *out_samples = (int16_t *)data;    int i, blk, ch, err;    /* initialize the GetBitContext with the start of valid AC-3 Frame */    if (s->input_buffer) {        /* copy input buffer to decoder context to avoid reading past the end           of the buffer, which can be caused by a damaged input stream. */        memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_MAX_FRAME_SIZE));        init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);    } else {        init_get_bits(&s->gbc, buf, buf_size * 8);    }    /* parse the syncinfo */    *data_size = 0;    err = parse_frame_header(s);    /* check that reported frame size fits in input buffer */    if(s->frame_size > buf_size) {        av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");        err = AC3_PARSE_ERROR_FRAME_SIZE;    }    /* check for crc mismatch */    if(err != AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_resilience >= FF_ER_CAREFUL) {        if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {            av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");            err = AC3_PARSE_ERROR_CRC;        }    }    if(err && err != AC3_PARSE_ERROR_CRC) {        switch(err) {            case AC3_PARSE_ERROR_SYNC:                av_log(avctx, AV_LOG_ERROR, "frame sync error\n");                return -1;            case AC3_PARSE_ERROR_BSID:                av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");                break;            case AC3_PARSE_ERROR_SAMPLE_RATE:                av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");                break;            case AC3_PARSE_ERROR_FRAME_SIZE:                av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");                break;            case AC3_PARSE_ERROR_FRAME_TYPE:                /* skip frame if CRC is ok. otherwise use error concealment. */                /* TODO: add support for substreams and dependent frames */                if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {                    av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");                    return s->frame_size;                } else {                    av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");                }                break;            default:                av_log(avctx, AV_LOG_ERROR, "invalid header\n");                break;        }    }    /* if frame is ok, set audio parameters */    if (!err) {        avctx->sample_rate = s->sample_rate;        avctx->bit_rate = s->bit_rate;        /* channel config */        s->out_channels = s->channels;        s->output_mode = s->channel_mode;        if(s->lfe_on)            s->output_mode |= AC3_OUTPUT_LFEON;        if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&                avctx->request_channels < s->channels) {            s->out_channels = avctx->request_channels;            s->output_mode  = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;        }        avctx->channels = s->out_channels;        /* set downmixing coefficients if needed */        if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&                s->fbw_channels == s->out_channels)) {            set_downmix_coeffs(s);        }    } else if (!s->out_channels) {        s->out_channels = avctx->channels;        if(s->out_channels < s->channels)            s->output_mode  = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;    }    /* parse the audio blocks */    for (blk = 0; blk < s->num_blocks; blk++) {        if (!err && ac3_parse_audio_block(s, blk)) {            av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");        }        /* interleave output samples */        for (i = 0; i < 256; i++)            for (ch = 0; ch < s->out_channels; ch++)                *(out_samples++) = s->int_output[ch][i];    }    *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);    return s->frame_size;}/** * Uninitialize the AC-3 decoder. */static av_cold int ac3_decode_end(AVCodecContext *avctx){    AC3DecodeContext *s = avctx->priv_data;    ff_mdct_end(&s->imdct_512);    ff_mdct_end(&s->imdct_256);    av_freep(&s->input_buffer);    return 0;}AVCodec ac3_decoder = {#ifdef __CW32__	    "ac3",	    CODEC_TYPE_AUDIO,	    CODEC_ID_AC3,	    sizeof (AC3DecodeContext),	    ac3_decode_init,	    0,	    ac3_decode_end,	    ac3_decode_frame,	    0,	    0,	    0,	    0,	    0,	    NULL_IF_CONFIG_SMALL("ATSC A/52 / AC-3"),#else	    .name = "ac3",	    .type = CODEC_TYPE_AUDIO,	    .id = CODEC_ID_AC3,	    .priv_data_size = sizeof (AC3DecodeContext),	    .init = ac3_decode_init,	    .close = ac3_decode_end,	    .decode = ac3_decode_frame,	    .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52 / AC-3"),#endif};

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -